РАСПОЗНАВАНИЕ МИКРОСКОПИЧЕСКИХ ИЗОБРАЖЕНИЙ ПЫЛЬЦЕВЫХ ЗЕРЕН С ПОМОЩЬЮ СВЕРТОЧНОЙ НЕЙРОННОЙ СЕТИ VGG-16
Аннотация
В статье приводится результат эксперимента по применению трансферного обучения с помощью сверточной нейронной сети Visual Geometry Group with 16 layers (VGG-16) применительно к задаче распознавания пыльцевых зерен на изображениях. Анализ информационно-теоретической базы по применению алгоритмов машинного обучения к задаче классификации пыльцевых зерен за последние несколько лет показал необходимость разработки (применения) нового метода к распознаванию изображений пыльцевых зерен, полученных с помощью оптического микроскопа. В настоящее время автоматическая классификация для идентификации пыльцы становится очень активной областью исследований. В статье обоснована задача автоматизации классификации пыльцевых зерен. Целью исследования является анализ эффективности и точности классификации микроскопических изображений пыльцевых зерен с помощью трансферного обучения сверточной нейронной сети VGG-16. Трансферное обучение было выполнено с помощью нейронной сети VGG-16, имеющей 13 сверточных слоев, группируемых в 5 блоков с пулингом и 3 сглаживающих слоя на выходе. Поскольку применяется трансферное обучение, то количество эпох обучения можно выбрать небольшим. У данной сети меняются только сглаживающие выходные слои, а извлечение признаков осуществляется с весами классической модели. Поэтому было выбрано использовать 10 эпох обучения. Другие гиперпараметры – регуляризация Drop Out с вероятностью 50 %, метод оптимизации – ADAM, функция активации – sigmoid, функция потерь – кросс-энтропия, размер батча – 32 изображения. В результате за счет настройки гиперпараметров модели и использования аугментаций удалось достичь доли верных распознаваний порядка 80 %. При этом в связи с разным количеством обучающих примеров частные характеристики по классам несколько отличаются. Так, максимальные точность и полнота достигают 94 и 83 % соответственно для типа Одуванчик. В будущем планируются исследования для применения аугментации в качестве предобработки для создания сбалансированной выборки. За счет применения сверточной нейронной сети VGG-16 к задаче распознаваний изображений пыльцевых зерен были достигнуты высокие показатели точности и эффективности метода.
Ключевые слова
машинное обучение, сверточные нейронные сети, задачи распознавания пыльцевых зерен, пыльцевые зерна, классификация, VGG-16
Полный текст:
PDFDOI: http://dx.doi.org/10.14529/ctcr220304
Ссылки
- На текущий момент ссылки отсутствуют.