Применение биоподобных алгоритмов для решения задачи маршрутизации в сетях FANET

Алексей Викторович Леонов

Аннотация


Успехи, достигнутые в разработке беспилотных летательных аппаратов (БПЛА) открывают новые возможности для их гражданского применения. На сегодняшний день БПЛА составляют важную часть научных исследований. Практическое применение БПЛА привело к необходимости одновременного участия в выполнении поставленных задач не одного, а группы взаимодействующих БПЛА. Для организации сети мульти-БПЛА необходимо использовать специальные алгоритмы маршрутизации, разработанные с учетом их специфических особенностей. В статье представлен краткий обзор существующих алгоритмов маршрутизации для Ad Hoc Networks, основанных на интеллекте роя (муравьиных и пчелиных колоний). Для решения задачи маршрутизации в сетях FANET проведен экспериментальный анализ, подтверждающий возможность эффективного использования биоподобных алгоритмов на примере протоколов BeeAdHoc и AntHocNet, имитирующих поведение пчел и муравьев в природе.


Ключевые слова


БПЛА; роевой интеллект; протоколы маршрутизации; беспроводная самоорганизующаяся сеть БПЛА; FANET; BeeAdHoc; AntHocNet; имитационное моделирование

Полный текст:

PDF (English)

Литература


Tareque M.H., Hossain M.S., Atiquzzaman M. On the Routing in Flying Ad Hoc Networks. Computer Science and Information Systems (FedCSIS), Lodz, 2015, pp. 1–9.

ANCHORS project. Available at: http://anchors-project.org/index.php/en/home/14-das-projektim-ueberblick/7-project-overview.html (accessed 02.05.2016).

Mihajlov B.B., Nazarova A.V., Jushhenko A.S. [Autonomous Mobile Robots – Navigation and Control]. Izvestija JuFU. Tehnicheskie Nauki [News of the South Federal University. Technical Sciences], 2016, vol. 2, no. 175, pp. 48–67. (in Russ.)

Beni G., Wang J. Swarm Intelligence in Cellular Robotic Systems. Robots and Biological Systems: Towards a New Bionics, Springer, 1993, pp. 703–712. DOI: 10.1007/978-3-642-58069-7_38

Bonabeau E., Dorigo M., Theraulaz G. Swarm Intelligence: from Natural to Artificial Systems. New York, Oxford University Press, 1999. 320 p.

Zajcev A.A., Kurejchik V.V., Polupanov A.A. [Review of Evolution Methods of Optimization Research Based on Swarm Intelligence]. Izvestija JuFU. Tehnicheskie Nauki [News of the South Federal University. Technical Sciences], 2010, vol. 12, no. 113, pp. 7–12. (in Russ.)

Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Reporttr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005. Available at: http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf.

Pham D.T., Ghanbarzadeh A., Koc E., Otri S., Rahim S., Zaidi M. The Bees Algorithm – A Novel Tool for Complex Optimisation. Intelligent Production Machines and Systems – 2nd I* PROMS Virtual International Conference 3–14 July 2006, 2006, pp. 454–461. DOI: 10.1016/b978-008045157-2/50081-x

Karaboga D., Basturk B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. Foundations of Fuzzy Logic and Soft Computing, Springer, 2007, pp. 789–798.

Blum C. Ant Colony Optimization: Introduction and Recent Trends. Phys. Life Rev., Dec. 2005, vol. 2, no. 4, pp. 353–373. DOI: 10.1016/j.plrev.2005.10.001

Dorigo M., Stützle T. Ant colony optimization. Cambridge, Mass, MIT Press, 2004.

Kureychik V.M., Kazharov A.A., Lyapunova I.A. [Definition of the Dependence of Ant Colony Optimization Algorithm Parameters on Input Data]. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya [Bulletin of Rostov State Transport University], 2014, no. 4 (56). – pp. 63–70. (in Russ.)

Ducatelle F., Di Caro G.A., Gambardella L.M. An Analysis of the Different Components of the AntHocNet Routing Algorithm. Ant Colony Optimization and swarm intelligence, Springer, 2006, pp. 37–48.

Di Caro G., Ducatelle F., Gambardella L.M. Swarm Intelligence for Routing in Mobile Ad Hoc Networks. SIS, 2005, pp. 76–83. DOI: 10.1109/sis.2005.1501605

Di Caro G., Ducatelle F., Gambardella L.M. AntHocNet: an Ant-Based Hybrid Routing Algorithm for Mobile Ad Hoc Networks. Parallel Problem Solving from Nature-PPSN VIII, 2004, pp. 461–470.

Günes M., Bouazizi I., Sorges U. ARA – The Ant-Colony Based Routing Algorithm for MANETs. Proc 2002 ICPP Workshop Ad Hoc Netw., 2002, pp. 79–85.

Doolan R., Muntean G.-M. Time-Ants: an Innovative Temporal and Spatial Ant-Based Vehicular Routing Mechanism. Intelligent Vehicles Symposium Proceedings, 2014 IEEE, 2014, pp. 951–956.

Camilo T., Carreto C., Silva J.S., Boavida F. An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks. Ant Colony Optimization and Swarm Intelligence, Springer, 2006, pp. 49–59.

Rana H., Thulasiraman P., Thulasiram R.K. MAZACORNET: Mobility Aware Zone Based Ant Colony Optimization Routing for VANET. Evolutionary Computation (CEC), 2013 IEEE Congress on, 2013, pp. 2948–2955.

Kadri B., Feham M., Mhammed A. Efficient and Secured Ant Routing Algorithm for Wireless Sensor Networks. IJ Netw. Secur., 2014, vol. 16, no. 2, pp. 149–156.

HOPNET: A Hybrid Ant Colony Optimization Routing Algorithm for Mobile Ad Hoc Network. Available at: http://www.sciencedirect.com/science/article/pii/S1570870508000644 (accessed 01.04.2016).

Li G., Boukhatem L. Adaptive Vehicular Routing Protocol Based on Ant Colony Optimization. Proceeding of the Tenth ACM International Workshop on Vehicular Inter-Networking, Systems, and Applications, 2013, pp. 95–98.

Jain A., Reddy B.V.R. Ant Colony Optimization Based Orthogonal Directional Proactive–Reactive Routing Protocol for Wireless Sensor Networks. Wirel. Pers. Commun., Nov. 2015, vol. 85, no. 1, pp. 179–205. DOI: 10.1007/s11277-015-2733-3

Aissani M., Fenouche M., Sadour H., Mellouk A. Ant-DSR: Cache Maintenance Based Routing Protocol for Mobile Ad-Hoc Networks. Telecommunications, 2007. AICT 2007. The Third Advanced International Conference on, 2007, pp. 35–35.

Sahoo R.R., Panda R., Behera D.K., Naskar M.K. A Trust Based Clustering with Ant Colony Routing in VANET. Computing Communication & Networking Technologies (ICCCNT), 2012 Third International Conference on, 2012, pp. 1–8.

Gajjar S., Sarkar M., Dasgupta K. FAMACROW: Fuzzy and Ant Colony Optimization Based Combined Mac, Routing, and Unequal Clustering Cross-Layer Protocol for Wireless Sensor Networks. Appl. Soft Comput., Jun. 2016, vol. 43, pp. 235–247. DOI: 10.1016/j.asoc.2016.02.019

Wedde H.F. et al. BeeAdHoc: an Energy Efficient Routing Algorithm for Mobile Ad Hoc Networks Inspired by Bee Behavior. Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, 2005, pp. 153–160. DOI: 10.1145/1068009.1068034

Bitam S., Mellouk A. Bee Life-Based Multi Constraints Multicast Routing Optimization for Vehicular Ad Hoc Networks. J. Netw. Comput. Appl., May 2013, vol. 36, no. 3, pp. 981–991. DOI: 10.1016/j.jnca.2012.01.023

Saleem M., Farooq M. Beesensor: a Bee-Inspired Power Aware Routing Protocol for Wireless Sensor Networks. Applications of Evolutionary Computing, Springer, 2007, pp. 81–90.

Giagkos A., Wilson M.S. BeeIP: Bee-Inspired Protocol for Routing in Mobile Ad-Hoc Networks. SAB, 2010, pp. 263–272.

Bitam S., Mellouk A. QoS Swarm Bee Routing Protocol for Vehicular Ad Hoc Networks. Communications (ICC), 2011 IEEE International Conference on, 2011, pp. 1–5.

Mazhar N., Farooq M. BeeAIS: Artificial Immune System Security for Nature Inspired, MANET Routing Protocol, BeeAdHoc. Artificial Immune Systems, Springer, 2007, pp. 370–381.

Bitam S., Mellouk A., Zeadally S. HyBR: A Hybrid Bio-Inspired Bee Swarm Routing Protocol for Safety Applications in Vehicular Ad Hoc NETworks (VANETs). J. Syst. Archit., Nov. 2013, vol. 59, no. 10, pp. 953–967. DOI: 10.1016/j.sysarc.2013.04.004

Karaboga D., Okdem S., Ozturk C. Cluster Based Wireless Sensor Network Routing Using Artificial Bee Colony Algorithm. Wirel. Netw., Oct. 2012, vol. 18, no. 7, pp. 847–860. DOI: 10.1007/s11276-012-0438-z

Albayrak Z., Zengin A. Bee-MANET: A New Swarm-Based Routing Protocol for Wireless Ad Hoc Networks. Electron. Electr. Eng., Mar. 2014, vol. 20, no. 3, pp. 91–97. DOI: 10.5755/j01.eee.20.3.3421

Bitam S., Mellouk A., Fowler S. MQBV: Multicast Quality of Service Swarm Bee Routing for Vehicular Ad Hoc Networks: Wireless MQBV for VANET. Wirel. Commun. Mob. Comput., Jun. 2015, vol. 15, no. 9, pp. 1391–1404. DOI: 10.1002/wcm.2420

Farooq M. Bee-Inspired Routing Protocols for Mobile Ad Hoc and Sensor Networks. BeeInspired Protocol Engineering, Springer, 2009, pp. 235–270. DOI: 10.1007/978-3-540-85954-3_8

AntHocNet. Available at: http://people.idsia.ch/~frederick/anthocnet/anthocnet.html (accessed 09.05.2016).

Amnai M., Fakhri Y., Abouchabaka J. Impact of Mobility on Delay-Throughput Performance in Multi-Service Mobile Ad-Hoc Networks. Int. J. Commun. Netw. Syst. Sci., 2011, vol. 4, no. 6, pp. 395–402.

Sarr C., Guérin-Lassous I. Estimating Average End-to-End Delays in IEEE 802.11 Multihop Wireless Networks, 2007, pp. 2478–2487.

Vasiliev D.S., Meitis D.S., Abilov A. Simulation-Based Comparison of AODV, OLSR and HWMP Protocols for Flying Ad Hoc Networks. Internet of Things, Smart Spaces, and Next Generation Networks and Systems, Springer, 2014, pp. 245–252.




DOI: http://dx.doi.org/10.14529/ctcr170201

Ссылки

  • На текущий момент ссылки отсутствуют.