Методы и принципы использования априорных знаний в задачах распознавания
Аннотация
Ключевые слова
Полный текст:
PDF (English)Литература
Felzenszwalb P.F., Girshick R.B., McAllester D., Ramanan D. Object Detection with Discriminatively Trained Part Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, vol. 32, no. 9, pp. 1627–1645. DOI: 10.1109/TPAMI.2009.167
Canavet O., Fleuret F. Efficient Sample Mining for Object Detection. Proceedings of the Asian Conference on Machine Learning (ACML), 2014, pp. 48–63.
Leibe B., Leonardis A., Schiele B. An Implicit Shape Model for Combined Object Categorization and Segmentation. Springer Berlin Heidelberg, 2006, pp. 508–524. DOI: 10.1007/11957959_26
Comaniciu D., Meer P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, vol. 24. no. 5, pp. 603–619. DOI: 10.1109/34.1000236
State Farm Distracted Driver Detection. Available at: https://www.kaggle.com/c/state-farmdistracted-driver-detection (accessed March 2017).
Zhang S., Bauckhage C., Cremers A.B. Informed Haar-Like Features Improve Pedestrian Detection. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 947–954. DOI: 10.1109/cvpr.2014.126
Wei S.E., Ramakrishna V., Kanade T., Sheikh Y. Convolutional Pose Machines. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4724–4732. DOI: 10.1109/cvpr.2016.511
DOI: http://dx.doi.org/10.14529/ctcr170302
Ссылки
- На текущий момент ссылки отсутствуют.