Применение искусственных нейронных сетей для прогноза нормализованного вегетационного индекса (NDVI) биоклиматических ландшафтов бассейна реки Дияла

Али Субхи Алхумайма, Санжар Муталович Абдуллаев

Аннотация


Данное исследование касается перспектив использования искусственных нейронных сетей для прогнозирования распределений Normalized Differential Vegetation Index (NDVI) в бассейне реки Дияла и главным образом того, каким образом информация о типах биоклиматических ландшафтов повлияет на прогнозируемость NDVI. Для этого в первом этапе эксперимента на вход персептронов с одним скрытым слоем и различными функциями активации подавались только общегеографические характеристики одного из 25 000 участков бассейна размером 0,05° × 0,05° (широта и долгота, минимальная, средняя и максимальная высота над уровнем моря, тип земного покрова) и сезонные метеорологические факторы (сумма осадков и средние температуры, минимальные и максимальные температуры) и прогнозировалось значение NDVI в начале вегетационного периода. Все 20 персептронов с 4–20 скрытыми узлами обучались на данных 2000–2010 гг. с помощью алгоритма обратного распространения ошибки и тестировались на данных за 2011–2016 гг. Было показано, что лучшее соответствие между прогнозируемым и фактическими NDVI с коэффициентом детерминации (КД), равным 0,78, достигается персептроном с логистической функцией активации 12 скрытых нейронов и гиперболической тангенциальной активацией выходного нейрона. При этом обнаружена пространственная неоднородность качества прогноза: в верховьях реки, характеризуемых согласно Кеппену – Треварта, как ландшафты умеренного горного климата и субтропического климата с сухим летом, КД = 0,76–0,80, тогда как в сухих степных ландшафтах и полупустынных ландшафтах низовий реки КД = 0,59–0,66. Эксперименты с 20 моделями с добавлением типа ландшафтов на вход персептронов показали возможное улучшение КД на 5 %, а индивидуальный подбор модели персептронов для каждого ландшафтов (всего 150 моделей) позволил увеличить КД до 0,73–0,85. Тем не менее сильное отличие характеристик индивидуальных моделей осложняет перспективы их использования в практических целях и требует поиска новых подходов.


Ключевые слова


дистанционное зондирование; прогноз NDVI; персептрон; биоклиматические ландшафты; гидротермический режим; вегетационный период

Полный текст:

PDF (English)

Литература


Tucker C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment, 1979, vol. 8, no. 2, pp. 127–150. DOI: 10.1016/0034-4257(79)90013-0

Bounoua L., Collatz G.J., Los S.O. et al. Sensitivity of Climate to Changes in NDVI. Journal of Climate, 2000, vol. 13, no. 13, pp. 2277–2292. DOI: 10.1175/1520-0442(2000)013<3C2277:SOCTCI>3E2.0.CO;2

De Jong R., Schaepman M.E., Furrer R. et al. Spatial Relationship between Climatologies and Changes in Global Vegetation Activity. Global Change Biology, 2013. vol. 19, no. 6, pp. 1953–1964. DOI: 10.1111/gcb.12193

Brandt M., Mbow C., Diouf A.A., Verger A., Samimi C., Fensholt R. Ground- and Satellite-Based Evidence of the Biophysical Mechanisms Behind the Greening Sahel. Global Change Biology, 2015, vol. 21, no. 4, pp. 1610–1620. DOI: 10.1111/gcb.12807

Ardöa J., Tagesson T., Sadegh J., Khatir A. MODIS EVI-based Net Primary Production in the Sahel 2000–2014. International Journal of Applied Earth Observation and Geoinformation, 2018, vol. 65, pp. 35–45. DOI: 10.1016/j.jag.2017.10.002

Li Z., Chen Y., Li W., Deng H., Fang G. Potential Impacts of Climate Change on Vegetation Dynamics in Central Asia. Journal of Geophysical Research: Atmosphers, 2015, vol. 120, pp. 12345–12356. DOI: 10.1002/2015JD023618

Propastin P.A., Kappas M., Erasmi S., Muratova N.R. Assessment of Desertification Risk in Central Asia and Kazakhstan Using NOAA AVHRR NDVI and Precipitation Data. Current Problems in Remote Sensing of the Earth from Space, 2007, vol. 4, no. 2, pp. 304–313.

Tulokhonov A.K., Tsydypov B.Z., Voloshin A.L., Batueva D.Zh., Chimeddorj Ts. Spatiotemporal Characteristics of Vegetation Cover of Arid and Semiarid Climatic Zones in Mongolia on the Basis of Vegetation Index NDVI. Arid Ecosystems, 2014, vol. 4, no. 2, pp. 61–68. DOI: 10.1134/S2079096114020115

Xu Y., Yang J., Chen, Y. NDVI-Based Vegetation Responses to Climate Change in an Arid Area of China. Theoretical and Applied Climatology, October 2016, vol. 126, no. 1–2, pp. 213–222. DOI: 10.1007/s00704-015-1572-1

Chu D., Lu L., Zhang T. Sensitivity of Normalized Difference Vegetation Index (NDVI) to Seasonal and Interannual Climate Conditions in the Lhasa Area, Tibetan Plateau, China. Arctic, Antarctic, and Alpine Research, 2007, vol. 39, no. 4, pp. 635–641. DOI: 10.1657/1523-0430(07-501)[CHU]2.0.CO;2

Medvedev M.A., SavinI. Yu., Bartalev S.A., Lupian E.A. [Usage of NOAA AVHRR Data for Detection of Vegetation Dynamics in Northern Eurasia]. Study of Earth from Space, 2011, no. 4, pp. 55–62. (in Russ.)

Elsakov V.V. [Spatial and Interannual Heterogeneity of Changes in the Vegetation Cover of Eurasian Tundra: Analysis of 2000–2016 MODIS Data]. Current Problems in Remote Sensing of the Earth from Space, 2017, vol. 14, no. 6, pp. 56–72. (in Russ.) DOI: 10.21046/2070-7401-2017-14-6-56-72

Telnova N.O. [Revealing and Mapping Long-Term NDVI Trends for the Analysis of Climate Change Contribution to Agroecosystems’ Productivity Dynamics in the Northern Eurasian Forest-Steppe and Steppe]. Current Problems in Rremote Sensing of the Earth from Space, 2017, vol. 14, no. 6, pp. 97–107. (in Russ.) DOI: 10.21046/2070-7401-2017-14-6-97-107

Muzylev E.L., Startseva Z.P., Uspensky A.B. et al. [Using Remote Sensing Data to Model Water and Heat Regimes of Rural Territories]. Current Problems in Remote Sensing of the Earth from Space, 2017, vol. 14, no. 6, pp. 108–136. (in Russ.) DOI: 10.21046/2070-7401-2017-14-6-108-136

Khalil Z.H., Abdullaev S.M. [Diagnosis of Landscapes of the Province of Al-Diwaniyah (Iraq) by Using of Landsat-8 Multispectral Images]. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 2018, vol. 7, no. 3. pp. 5–18. (in Russ.) DOI: 10.14529/cmse180301

Schiraldi N.J., Roundy P.E. The Evolution of Agricultural Drought Transition Periods in the U.S. Corn Belt. Monthly Weather Review, 2017, vol. 145, no. 2, pp. 451–472. DOI: 10.1175/MWR-D-16-0225.1

Sruthi S., Aslam M.A.M. Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. Aquatic Procedia, 2015, vol. 4, pp. 1258–1264. DOI: 10.1016/j.aqpro.2015.02.164

Strashnaya A.I., Tarasova L.L., Bogomolova N.A. et al. [Prediction of Yield of Grain and Leguminous Crops in the Central Chernozem Areas Based on Aggregation of Terrestrial and Satellite Data]. Hydrometeorological Research Center of the Russian Federation, 2015, no. 353, pp. 128–153. (in Russ.)

Stankevich S.A., PiestovaI.O. [Vegetation Cover Changes Mapping within Kiev Metropolis Agglomeration Using Long-Term Time Series of Landsat Multispectral Satellite Imagery]. Current Problems in Remote Sensing of the Earth from Space, 2014, vol. 11, no. 2, pp. 187–196. (in Russ.)

Bartholy J., Pongracz R., Dezso Z., Fricke C. Analysing the Urban Vegetation Effect Using Satellite Imagery for Budapest. (ICUC9 – 9th) International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, 2015, pp. 1–4.

Maxwell A.E., Warner T.A., Fang F. Implementation of Machine-Learning Classification in Remote Sensing: an Applied Review. International Journal of Remote Sensing, 2018, vol. 39, no. 9, pp. 2784–2817. DOI: 10.1080/01431161.2018.1433343

Zhao Z., Gao J., Wang Y., Liu J., Li S. Exploring Spatially Variable Relationships between NDVI and Climatic Factors in a Transition Zone Using Geographically Weighted Regression. Theoretical and Applied Climatology, 2015, vol. 120, no. 3–4, pp. 507–519. DOI: 10.1007/s00704-014-1188-x

Sodnomov B.V., Alexander A.A., Tsydypov B.Z., Garmaev E.Zh. [Algorithm of Assessment of Long-Term Variations of MODIS NDVI]. Journal of Siberian Federal University. Series: Engineering & Technologies, 2018, vol. 11, no. 1, pp. 61–68. (in Russ.) DOI: 10.17516/1999-494X-0009

Kataev M.Yu., Bekerov A.A., Shalda P.V. [Trend Analysis for Time Series of NDVI]. Reports of Tomsk State University of Control Systems and Radioelectronics, 2017, vol. 20, no. 1, pp. 81–84. (in Russ.) DOI: 10.21293/1818-0442-2017-20-1-81-84

Zheng Y., Han J., Huang Y., Fassnacht S.R, Xie S., Lv E., Chen M. Vegetation Response to Climate Conditions Based on NDVI Simulations Using Stepwise Cluster Analysis for the Three-River Headwaters Region of China. Ecological Indicators, September 2018, vol. 92, pp. 18–29. DOI: 10.1016/j.ecolind.2017.06.040

Stepchenko A., Chizhov J. NDVI Short-Term Forecasting Using Recurrent Neural Networks. Proceedings of the 10th International Scientific and Practical Conference, 2015. Environment. Technology. Resources, Rezekne, Latvia, 2015, vol. III, pp. 180–185. DOI: 10.17770/etr2015vol3.167

Das M., Ghosh S.K. Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 2016. vol. 13, no. 12, pp. 1984–1988. DOI: 10.1109/LGRS.2016.2619984

Nay J., Burchfield E., Gilligan J. A Machine-Learning Approach to Forecasting Remotely Sensed Vegetation Health. J. of Remote Sensing, 2018, vol. 39, no. 6, pp. 1800–1816. DOI: 10.1080/01431161.2017.1410296

Adamo N., Al-Ansari N., Sissakian V.K., Knutsson S., Laue J. Climate Change: The Uncertain Future of Tigris River Tributaries’ Basins. Journal of Earth Sciences and Geotechnical Engineering, 2018, vol. 8, no. 3, pp. 75–93.

Nikolayev V.А. Landshaftovedeniye: seminarskiye i prakticheskiye zanyatiya. [Landscape Science: Seminars and Practical Classes]. Moscow, Moscow State Univ. Publ., 2006. 208 p.

Abdullaev S.M., Lenskaya O.Y., Gracheva I.V. [Classification and Assessment of Landscapes Condition in the Zone of Influence of the Projected South Ural Nuclear Electric Powerstation]. Bulletin of the Voronezh State University. Series: Geography, Geoecology, 2010, no. 2, pp. 60–65. (in Russ.)

GOST 17.8.1.02–88. Okhrana prirody. Landshafty. Klassifikatsiya, Okhrana prirody [State Standard 17.8.1.02–88. Nature Protection. Landscapes. Classification]. Moscow, IPK Publ. Standards, 2002.

UN-ESCWA and BGR (United Nations Economic and Social Commission for Western Asia; Bundesanstalt und Rohstoffe). Inventory of Shared Water Resources in Western Asia. Beirut, 2013.

Japan’s Ministry of Economy, Trade and Industry (METI), and U.S. National Aeronautics and Space Administration (NASA). ASTER Global Digital Elevation Model [Data set]. NASA EOSDIS Land Processes DAAC, 2009. DOI: 10.5067/ASTER/ASTGTM.002

Latham J., Cumani R., Rosati I., Bloise M. Global Land Cover SHARE (GLC-SHARE) database Beta-Release Version 1.0. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy,2014. pp. 1–39. (Available at http://www.fao.org/uploads/media/glc-share-doc.pdf)

Didan K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC, 2015. DOI: 10.5067/MODIS/MOD13Q1.006

Fensholt R., Proud S.R. Evaluation of Earth Observation Based Global Long-Term Vegetation Trends – Comparing GIMMS and MODIS Global NDVI Time Series. Remote Sensing of Environment, 2012, vol. 119, pp. 131–147. DOI: 10.1016/j.rse.2011.12.015

Jamali S., Seaquist J., Eklundh L., Ardö J. Automated Mapping of Vegetation Trends with Polynomials Using NDVI Imagery over the Sahel. Remote Sens. of Environment, 2014. vol. 141, pp. 79–89. DOI: 10.1016/j.rse.2013.10.019

Harris I.C., Jones P.D. University of East Anglia Climatic Research Unit (CRU). CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) Version 4.01 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901 – Dec. 2016). Centre for Environmental Data Analysis (CEDA), 2017. DOI: 10.1002/joc.3711

Willmott C.J., Matsuura K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1900–2017). Version 5.01. University of Delaware. Department of Geography, 2019. Available at: http://climate.geog.udel.edu/~climate/

Kislov A.V. Klimatologiya [Climatology]. Moscow, Academia Publ., 2011. 224 p.

Belda M., Holtanová E., Halenka T., Kalvová J. Climate Classification Revisited: From Köppen to Trewartha. Climate Research, 2014, vol. 59, no. 1, pp. 1–13. DOI: 10.3354/cr01204

Baker B., Diaz H., Hargrove W., Hoffman F. Use of the Köppen-Trewartha Climate Classification to Evaluate Climatic Refugia in Statistically Derived Ecoregions for the People’s Republic of China. Climatic Change, 2010, vol. 98, no. 1–2, pp. 113–131. DOI: 10.1007/s10584-009-9622-2

Deo R.C., Şahin M. Application of the Artificial Neural Network Model for Prediction of Monthly Standardized Precipitation and Evapotranspiration Index Using Hydrometeorological Parameters and Climate Indices in Eastern Australia. Atmospheric Research, 2015, vol. 161–162, pp. 65–81. DOI: 10.1016/j.atmosres.2015.03.018

Alhumaima A.S., Abdullaev S.M. Preliminary Assessment of Hydrothermal Risks in the Euphrates–Tigris Basin: Droughts in Iraq. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 2018, vol. 7, no. 4, pp. 41–58. DOI: 10.14529/cmse180403

Stathakis D. How Many Hidden Layers and Nodes? J. of Remote Sensing, 2009, vol. 30, no. 8, pp. 2133–2147. DOI: 10.1080/01431160802549278

Sheela K.Gnana, Deepa S.N. Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Mathematical Problems in Engineering, 2013. Article ID 425740, 11 p. DOI: 10.1155/2013/425740




DOI: http://dx.doi.org/10.14529/ctcr190301

Ссылки

  • На текущий момент ссылки отсутствуют.