Оптимизация конструкции ансамбля классификаторов: пример интеллектуального анализа образовательных данных
Аннотация
Ключевые слова
Полный текст:
PDF (English)Литература
Romero C., Ventura S. Educational Data Mining: A Review of the State of the Art. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 2010, vol. 40, no. 6, pp. 601–618. DOI: 10.1109/TSMCC.2010.2053532
U.S. Department of Education, Office of Educational Technology. Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief. Washington, D.C., 2012, Available at: https://tech.ed.gov/learning-analytics/edm-la-brief.pdf (accessed: 03.07.2018).
Baker R.S., Inventado P.S. Educational Data Mining and Learning Analytics. In: Larusson J., White B. (Eds.). Learning Analytics. Springer, New York, NY, 2014, pp. 61–75. DOI: 10.1007/978-1-4614-3305-7_4
Calvet Liñán L., Juan Pérez Á.A. Educational Data Mining and Learning Analytics: Differences, Similarities, and Time Evolution. RUSC. Universities and Knowledge Society Journal, 2015, vol. 12, no. 3, pp. 98–112. DOI: 10.7238/rusc.v12i3.2515
Jovanovic M., Vukicevic M., Milovanovic M., Minovic M. Using Data Mining on Student Behavior and Cognitive Style Data for Improving E-Learning Systems: a Case Study. I. Journal of Computational Intelligence Systems, 2012, vol. 5, no. 3, pp. 597–610. DOI: 10.1080/18756891.2012.696923
Berland М., Baker R.S., Blikstein P. Educational Data Mining and Learning Analytics: Applications to Constructionist Research. Tech Know Learn., 2014, vol. 19, pp. 205–220. DOI: 10.1007/s10758-014-9223-7
Slater S., Joksimovic S., Kovanovic V., et al. Tools for Educational Data Mining: A Review. Journal of Educational and Behavioral Statistics, 2017, vol. 42, no. 1, pp. 85–106. DOI: 10.3102/1076998616666808
Castro-Wunsch K., Ahadi A., Petersen A. Evaluating Neural Networks as a Method for Identifying Students in Need of Assistance. SIGCSE’ 17, March 08–11, 2017, Seattle, WA, USA. DOI: 10.1145/3017680.3017792.
Hussain S., Fadhil M.Z., Salal Y.K., Theodoru P., Kurtoğlu F., Hazarika G.C. Prediction Model on Student Performance Based on Internal Assessment Using Deep Learning. I. Journal of Emerging Technologies in Learning, 2019, vol. 14, no. 8, pp. 4–22. DOI: 10.3991/ijet.v14i08.10001
Wu X., Kumar V., Quinlan R.J. et al. Top 10 Algorithms in Data Mining. Knowl. Inf. Syst., 2008, vol. 14, pp. 1–37. DOI: 10.1007/s10115-007-0114-2
Kumar M., Salal Y.K. Systematic Review of Predicting Student's Performance in Academics I. J. of Engineering and Advanced Tech., 2019, vol. 8, no. 3, рp. 54–61.
Smith-Miles K.A. Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection. ACM Comput. Surv., 2008, vol. 41, no. 1, Article 6, 25 p. DOI: 10.1145/1456650.1456656
Vilalta R., Giraud-Carrier C., Brazdil P. Meta-Learning – Concepts and Techniques. In: Data Mining and Knowledge Discovery Handbook, Springer, 2010, pp. 717–732. DOI: 10.1007/978-0-387-09823-4_36
Salal Y.K., Abdullaev S.M., Kumar M. Educational Data Mining: Student Performance Prediction in Academic. I. J. of Engineering and Advanced Tech., 2019, vol. 8, no. 4C, pp. 54–59.
Trabelsi M., Meddouri N., Maddouri M. A New Feature Selection Method for Nominal Classifier Based on Formal Concept Analysis. Procedia Computer Science, 2017, vol. 112, pp. 186–194. DOI: 10.1016/j.procs.2017.08.227
Quinlan J.R. Induction of Decision Trees. Machine Learning, 1986, no. 1, pp. 81–106. DOI: 10.1007/BF00116251
Kohavi R., John G.H. Wrappers for Feature Subset Selection. Artificial Intelligence (97), 1997, pp. 273–324 DOI: 10.1016/S0004-3702(97)00043-X
Freund Y., Schapire R.E. A Short Introduction to Boosting. J. of Japanese Society for Artificial Intelligence, 1999, vol. 14, no. 5, pp. 771–780.
DOI: http://dx.doi.org/10.14529/ctcr190414
Ссылки
- На текущий момент ссылки отсутствуют.