Обоснование параметров преобразователя постоянного тока для источника автономного электро-снабжения

Борис Николаевич Абрамович, Денис Анатольевич Устинов, Ваэль Джозеф Абдалла

Аннотация


С внедрением концепции Smart Grid в развитие электроэнергетики нарастает интерес к использованию DC/DC-преобразователей для координированной работы на одну систему шин постоянного тока разнотипных источников питания, имеющих в своем составе источники возобновляемой энергии, накопители электроэнергии (аккумуляторные батареи, модули суперконденсаторов), различную нагрузку. В статье выполнен анализ DC/DC-преобразователей для систем автономного электроснабжения. Обосновано применение преобразователя типа SEPIC (Single Ended Primary Inductance Converter). Представлена методика определения параметров преобразователя. Продемонстрирована и обоснована регулировка активного периода коэффициента заполнения в соответствии с теоретическим поведением после изменения входного напряжения выше и ниже желаемого выходного значения. Выполнено моделирование работы преобразователя в режимах повышения, понижения и стабилизации выходного напряжения в пакете MATLAB / Simulink. Полученные результаты моделирования показывают эффективность предлагаемого решения для источника автономного электроснабжения.


Ключевые слова


импульсный источник питания; топология преобразователя; повышающий-понижающий преобразо-ватель; баланс вольт-секунд; баланс заряда конденсатора; SEPIC

Полный текст:

PDF

Литература


Зотин О.Т. В преддверии возрождения постоянного тока. Силовая электроника. 2013. Т. 6, № 45.

С. 7–14. [Zotin O.T. In anticipation of DC revival. Power electronics, 2013, vol. 6, no. 45, pp. 7–14. (in Russ.)]

Denardo A., Femia N., Forrisi F., Granato M. SEPIC converter passive components design. 2008 IEEE 15th Electronics, Circuits and Systems (ICECS 2008), 2008, pp. 1002–1005. DOI: 10.1109/icecs.2008.4675025

Mitchell D.M. ACDC converter having an improved power factor. Patent U.S., no. 4 412 277, 1983.

Laszlo H., Yungtaek J., Jovanovic M.M. Performance Evaluation of Bridgeless PFC Boost Rectifiers. IEEE Transactions on Power Electronics, 2008, vol. 23, no. 3, pp. 1381–1390. DOI: 10.1109/tpel.2008.921107

Tollik D., Pietkiewicz A. Comparative analysis of l-phase active power factor correction topologies. Proc. Int. Telecommunication Energy Conf., 1992, pp. 517–523. DOI: 10.1109/intlec.1992.268393

Souza A.F., Barbi I. High power factor rectifier with reduced conduction and commutation losses. Proc. Int. Telecommunication Energy Conf., 1999, pp. 8.1.1–8.1.5. DOI: 10.1109/intlec.1999.794044

Пирог С., Шклярский Я.Э., Скамьин А.Н. Идентификация местоположения нелинейной электриче-ской нагрузки. Записки Горного института. 2019. Т. 237. С. 317–321. [Pirog S, Shklyarskiy Y.E., Skamyin A.N. Non-linear Electrical Load Location Identification. Journal of Mining Institute, 2019, vol. 237, pp. 317–322.]

DOI: 10.31897/pmi.2019.3.317

Salmon J.C. Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase ac supplies and using either single or split dc rail voltage. Proc. IEEE Applied Power Electronics Conf., 1995, pp. 473–479. DOI: 10.1109/apec.1995.468990

Woo-Young Choi et al. Bridgeless Boost Rectifier with Low Conduction Losses and Reduced Diode Re-verse-Recovery Problems. IEEE Transactions on Industrial Electronics, 2007, vol. 54, no. 2, pp. 769–780. DOI: 10.1109/tie.2007.891991

Enjeti P.N., Martinez R. A high performance single phase AC to DC rectifier with input power factor cor-rection. Proc. IEEE Appl. Power Electron. Conf., 1993, pp. 190–195. DOI: 10.1109/apec.1993.290631

Souza A.F., Barbi I. A new ZVS semiresonant high power factor rectifier with reduced conduction losses. IEEE Trans. Ind. Electron., 1999, vol. 46, no. 1, pp. 82–90. DOI: 10.1109/41.744393

Moriconi U. A bridgeless PFC configuration based on L4981 PFC controller. Application Note AN 1606, 2002, pp. 1–18.

Wang C.M. A novel zero-voltage switching PWM boost rectifier with high power factor and low conduc-tion losses. Proc. INTELEC., 2003, pp. 224–229.

Moschopoulos G., Jain P. A novel single-phase soft-switched rectifier with unity power factor and minimal component count. IEEE Trans. Ind. Electron., 2004, vol. 51, no. 3, pp. 566–576. DOI: 10.1109/tie.2004.825334

Ern T., Frisch M. Second generation of PFC solutions. Power Electron. Europe, 2004, no. 7, pp. 33–35.

Salmon J.C. Circuit topologies for single-phase voltage-doubler boost rectifiers. Proc. IEEE Appl. Power Electron. Conf., 1992, pp. 549–556. DOI: 10.1109/apec.1992.228362

Lykov Y.V., Gorelikov V.G., Baatarkhuu G. Analytical research and classification of mechanism of dia-mond drilling-bits contact with rocks during well sinking. 2017 IOP Conf. Ser.: Earth Environ. Sci. 87 022012, 2017. Available at: https://iopscience.iop.org/article/10.1088/1755-1315/87/2/022012 (accessed 15.02.2020). DOI: 10.1088/1755-1315/87/2/022012

Ye H. et al. Common mode noise modeling and analysis of dual boost PFC circuit. Proc. Int. Telecom-mun. Energy Conf., 2004, pp. 575–582.

Lu B., Brown R., Soldano M. Bridgeless PFC implementation using one cycle control technique. Proc. IEEE Appl. Power Electron. Conf., 2005, pp. 812–817. DOI: 10.1109/apec.2005.1453073

Kong P., Wang S., Lee F.C. Common mode EMI noise suppression in bridgeless boost PFC converter. Proc. CPES Power Electron. Conf., 2006, pp. 65–70.

Wei H., Batarseh I. Comparison of basic converter topologies for power factor correction. Proceedings IEEE Southeastcon '98 'Engineering for a New Era', Orlando, FL, USA. 1998, pp. 348–353.

Gorelikov V.G., Lykov Y.V., Baatarkhuu G. Analytical and Experimental Study of the Mechanisms of Diamond Bits Interaction with Rocks in the Wellbore During Sinking Processes. International Journal of Applied Engineering Research, 2016, vol. 11, no. 10, pp. 7012–7016. Available at: http://www.ripublication.com (ac-cessed 10.02.2020).

Wang C.M. A novel single-stage high-power-factor electronic ballast with symmetrical half-bridge topo-logy. IEEE Trans. Ind. Electron., 2008, vol. 55, no. 2, pp. 969–972. DOI: 10.1109/tie.2007.896556

Ismail E.H. Bridgeless SEPIC Rectifier with Unity Power Factor and Reduced Conduction Losses. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 4, pp. 1147–1157. DOI: 10.1109/tie.2008.2007552

Singh K., Singh M. Analysis and Comparison of Performance of Various DC-DC Converters using MATLAB SIMULINK. International Journal for Scientific Research & Development, 2015, vol. 3, iss. 08.

Sahid M.R., Yatim A.H.M., Taufik T. A new AC-DC converter using bridgeless SEPIC. IECON 2010 – 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010, pp. 286–290. DOI: 10.1109/iecon.2010.5675012

Sebastian J. Improving power factor correction in distributed power supply systems using PWM

and ZCS-QR SEPIC topologies. Proc. IEEE Power Electron. Spec. Conf., 1991, pp. 780–791. DOI: 10.1109/pesc.1991.162764

Cuk S., Brkovic M. Input current shaper using Cuk converter. Proc. Int. Telecommun. Energy Conf., 1992, pp. 532–539. DOI: 10.1109/intlec.1992.268391

Simonetti D.S.L., Sebastian J., Uceda J. The discontinuous conduction mode Sepic and CUK power factor preregulators: Analysis and design. IEEE Trans. Ind. Electron., 1997, vol. 44, no. 5, pp. 630–637. DOI: 10.1109/41.633459

Spiazzi G., Rosseto L. High-quality rectifier based on coupled-inductor Sepic topology. Proc. IEEE Appl. Power Electron. Conf., 1994, pp. 336–341. DOI: 10.1109/pesc.1994.349712

Dos Reis F.S., Sebastian J., Uceda J. Characterization of conducted noise generation for Sepic CUK and Boost converters working as power factor preregulators. Proc. IEEE IECON ‘93, 1993, vol. 2, pp. 965–970. DOI: 10.1109/iecon.1993.339144

Guerra Dand Iakovleva E 2019 E3S Web Conf. 140 4013.

Zhang H., Yi C., Wei T. Nonlinear Modal Analysis of Transient Interaction Behaviors in SEPIC DC-DC Converters. IET Power Electron., 2017, vol. 10, iss. 10, pp. 1190–1199. DOI: 10.1049/iet-pel.2016.0858

Li N. et al. Digital control strategies for DC/DC SEPIC converters towards integration. INSA de Lyon, 2012. English. Available at: https://tel.archives-ouvertes.fr/tel-00760064 (accessed 10.02.2020).

Anuradha C., Sakthivel C., Venkatesan T., Chellammal N. Analysis of Non-Isolated Multi-Port Single Ended Primary Inductor Converter for Standalone Applications. Energies, 2018, vol. 11 (3), p. 539. DOI: 10.3390/en11030539

Rose J.L., Sankaragomathi B. Design, Modeling, Analysis and Simulation of a SEPIC Converter. Middle-East Journal of Scientific Research, 2016, vol. 24 (7), pp. 2302–2308. Available at: https://www.idosi.org/mejsr/mejsr24(7)16/20.pdf (accessed 27.02.2020).

Erickson R.W., Maksimovic D. Fundamentals of Power Electronics. 2001, Boston, MA: Springer US. 912 p.

Zhang D. Revised 2013 AN-1484 Designing A SEPIC Converter (Rev. E). Available at: https://www.ti.com/lit/an/snva168e/snva168e.pdf (accessed 27.02.2020).

Mohan N., Undeland T.M., Robbins W.P. Power Electronics. Converters, Applications, and Design.

Hoboken, N.J., John Wiley & Sons, 1995. 667 p.

Al Sakka M., Van Mierlo J., Gualous H. DC/DC Converters for Electric Vehicles, Electric Vehicles. Model-ling and Simulations, Seref Soylu, IntechOpen, 2011. DOI: 10.5772/17048. Available at: https://www.intechopen.com/books/electric-vehicles-modelling-and-simulations/dc-dc-converters-for-electric-vehicles (accessed 27.02.2020).

SEPIC Equations and Component Ratings [Electronic Resource]. Maxim Integrated: Technical Docu-ment. 2002. Available at: https://pdfserv.maximintegrated.com/en/an/AN1051.pdf (accessed 01.03.2020).




DOI: http://dx.doi.org/10.14529/power200410

Ссылки

  • На текущий момент ссылки отсутствуют.