Анализ способов модуляции напряжения активных выпрямителей на базе модульных многоуровневых конвертеров

Ильдар Равильевич Абдулвелеев, Тимур Рифхатович Храмшин, Геннадий Петрович Корнилов

Аннотация


Рассмотрены многоуровневые конвертеры на базе модульной конструкции (ММС), предназначенные для высоковольтных сетей в качестве активных выпрямителей регулируемых электроприводов переменного тока, а также статических компенсаторов реактивной мощности. Приведена структура ММС, отличительная особенность которой заключается в том, что каждая фаза содержит ряд последовательно включенных одинаковых подмодулей. Представлена типовая топология подмодуля, состоящая из конденсатора, шунтируемого встречно-параллельным соединением диода и транзистора. Рассмотрены возможные рабочие состояния подмодуля, влияющие на уровень напряжения на входных зажимах. Детально проанализированы три известных способа модуляции напряжения ММС: метод амплитудноимпульсной модуляции, метод с назначением коммутируемого подмодуля и метод сравнения с опорным напряжением. Приведено содержание высших гармоник в выходном линейном напряжении ММС для трех перечисленных способов модуляции. Показано, что в методе сравнения с опорным напряжением уровень THD напряжения на входных зажимах конвертера составляет значение порядка 4 % при частоте коммутации силовых ключей 300 Гц.

Ключевые слова


модульный многоуровневый конвертер; способы модуляции; активный выпрямитель; высшие гармоники, искажение синусоидальности кривой

Полный текст:

PDF

Литература


Храмшин Т.Р., Корнилов Г.П., Крубцов Д.С. и др. Способы повышения устойчивости электроприводов непрерывных производств при провалах напряжения. Вестник Южно-Уральского государственного университета. Серия «Энергетика». 2014. Т. 14, № 2. С. 80–87. [Khramshin T.R., Kornilov G.P.,

Krubtsov D.S. et al. (Ways to Improve the Stability of Electric Drives of Continuous Production with Brownouts). Bulletin of the South Ural St. Univ. Ser. Power Engineering, 2014, vol. 14, no. 2, pp. 80–87. (in Russ.)]

Храмшин Т.Р., Крубцов Д.С., Корнилов Г.П. Математическая модель активного выпрямителя в несимметричных режимах работы. Электротехника: сетевой электронный научный журнал. 2014.

Т. 1, № 1. С. 3–7. [Khramshin T.R., Krubcov D.S., Коrnilov G.P. A Mathematical Model of the Main Power Circuit of Electric Rolling Mills. Electrotehnika: setevoi electronnyi nauchnyi jurnal (Electrical Engineering: Network Electronic Scientific Journal), 2014, no. 1, pp. 3–7. (in Russ.)]

Hingorani N.G., Gyugi L. Understanding FACTS. Concepts and Technology of Flexible AC Transmission Systems. New York, IEEE Press, 1999. 432 p.

Храмшин Т.Р., Крубцов Д.С., Корнилов Г.П. Оценка методов широтно-импульсной модуляции напряжения активных выпрямителей прокатных станов. Машиностроение: сетевой электронный научный журнал. –2013. – № 2. – С. 48–52. [Hramshin T.R., Krubtsov D.S., Kornilov G.P. (Evaluation of Methods PWM Voltage Active Rectifiers Rolling Mills). Russian Internet Journal of Industrial Engineering, 2013, no. 2, pp. 48–53. Available at:http://indust-engineering.ru/issues/2013/2013-2.pdf.]

Marquardt R. Stromrichterschaltungen mit verteilten Energiespeichern. German Patent: DE10103031, 24 January 2001.

Lesnicar A., Marquardt R. An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range. In Proc. Power Tech Conference,Bologna (Spain), June 2003.

Lesnicar A., Marquardt R. A New Modular Voltage Source Inverter Topology. Proc. Power Electronics and Applications (EPE), Toulouse (France), September 2003.

Siemens AG: Introduction into HVDC PLUS, 2005 [Online]: https://www.energy-portal.siemens.com.

Gemmell B., Dorn J., Retzmann D., Soerangr D. Prospects of Multilevel VSC Technologies for Power Transmission. Proc. Conf. Rec. IEEE TDCE, 2008, pp. 1–16.

Feldman R., Watson A.J., Clare J.C., Wheeler P.W., Trainer D. R., Crookes R.W. DC Fault Ridethrough Capability and Statcom Operation of a Hybrid Voltage Source Converter Arrangement for HVDC Power Transmission and Reactive Power Compensation. Power Electronics, Machines and Drives (PEMD 2012), 6th IET International Conference on, Mar. 2012, pp. 1–5.

Храмшин Т.Р., Абдулвелеев И.Р., Корнилов Г.П. Обеспечение электромагнитной совместимости мощных электротехнических комплексов. Вестник ЮУрГУ. Серия «Энергетика». 2015. Т. 15, № 1. C. 82–93. [Khramshin T.R., Abdulveleev I.R., Kornilov G.P. (Assurance of Electromagnetic Compatibility of Powerful Electrotechnical Systems). Bulletin of the South Ural State University. Ser. Power Engineering, 2015, vol. 15, no. 1, pp. 82–93. (in Russ.) DOI: 10.14529/power150110]

Храмшин Т.Р., Абдулвелеев И.Р., Корнилов Г.П. Математическая модель силовой схемы мощного СТАТКОМа. Электротехника: сетевой электронный научный журнал. 2015. Т. 2, № 1. – С. 38–46. [Khramshin T.R., Abdulveleev I.R., Коrnilov G.P. Mathematical Model of the Power Circuit of STATCOM of Large Capacity. Electrotehnika: setevoi electronnyi nauchnyi jurnal (Electrical Engineering: Network Electronic Scientific Journal), 2015, vol. 2, no. 1, pp. 38–46. (in Russ.)]

Храмшин Т.Р., Абдулвелеев И.Р., Корнилов Г.П. Электромагнитная совместимость мощного СТАТКОМа при несимметричных режимах работы питающей сети. Электротехника: сетевой электронный научный журнал. 2015. Т. 2, № 2. – С. 40–46. [Khramshin T.R., Abdulveleev I.R., Коrnilov G.P. EMC Powerful STATCOMs with Unbalanced Conditions of Electric Supply Grid. Electrotehnika: setevoi electronnyi nauchnyi jurnal (Electrical Engineering: Network Electronic Scientific Journal), 2015, vol. 2, no. 2, pp. 40–46. (in Russ.)]

Rohner S., Bernet S., Hiller M., Sommer R. Pulse Width Modulation Scheme for the Modular Multilevel Converter. Proc. Conf. EPE 2009. Barcelona, pp. 1–10.

Antonopoulos A. On the Internal Dynamics and AC-Motor Drive Application of Modular Multilevel Converters. Doctoral Thesis Stockholm, Sweden 2014. 158 p.

Spichartz M., Staudt V., Steimel A. Modular Multilevel Converter for Propulsion System of Electric Ships. Electric Ship Technologies Symposium (ESTS), 2013 IEEE, pp. 237–242.

Hagiwara M., Akagi H. Control and Experiment of Pulsewidth-Modulated Modular Multilevel

Converters. IEEE Transactions On Power Electronics, July 2009, vol. 24, no. 7, pp. 1737–1746.

Mei J., Shen K., Xiao B., Tolbert L.M., Zheng J. A New Selective Loop Bias Mapping Phase

Disposition PWM with Dynamic Voltage Balance Capability for Modular Multilevel Converter. IEEE Transactions On Industrial Electronics, February 2014, vol. 61, no. 2, pp. 798–807.

Solas E., Abad G., Barrena J.A., Aurtenetxea S., Cárcar A., Zajac L. Modular Multilevel Converter with Different Submodule Concepts. Part I: Capacitor Voltage Balancing Method. IEEE Transactions on Industrial Electronics, October 2013, vol. 60, no. 10, pp. 4525–4535.

Shi K., Shen F., Lu D., Lin P., Chen M., Xu D. A Novel Start-up Scheme for Modular Multilevel Converter. Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, pp. 4180–4187.

Shen K., Zhao D., Mei J., Tolbert L.M., Wang J., Ban M., Ji Y., Cai X. Elimination of Harmonics in a Modular Multilevel Converter Using Particle Swarm Optimization-Based Staircase Modulation Strategy. IEEE Transactions On Industrial Electronics, October 2014, vol. 61, no. 10, pp. 5311–5322.

Debnath S., Qin J., Bahrani B., Saeedifard M., Barbosa P. Operation, Control, and Applications of the Modular Multilevel Converter: A Review. IEEE Transactions on Power Electronics, January 2015, vol. 30, no. 1, pp. 37–53.

Dahidah M.S.A., Agelidis V.G. Selective Harmonic Elimination PWM Control for Cascaded

Multilevel Voltage Source Converters: A Generalized Formula. IEEE Trans. Power Electron., Jul. 2008, vol. 23, no. 4, pp. 1620–1630.

Deliang Wu, Li Peng. Eliminating the Influence of Capacitor Voltage Ripple on Current Control for Grid-Connected Modular Multilevel Converter. Applied Power Electronics Conference and Exposition (APEC), March 2015 IEEE, pp. 2128–2132.

Adam G.P., Ahmed K.H., Finney S.J., Williams B.W. Modular Multilevel Converter for Medium Voltage Applications. Electric Machines & Drives Conference (IEMDC), 2011 IEEE International, May 2011, pp. 1013–1018.

Konstantinou G., Agelidis V. Performance Evaluation of Half-Bridge Cascaded Multilevel Converters Operated with Multicarrier Sinusoidal PWM Techniques. Proc. IEEE Conf. Ind. Electron. Appl., 2009, pp. 3399–3404.

Kang D.-W., Lee W.-K., Hyun D.-S. Carrier-Rotation Strategy for Voltage Balancing in Flying Capacitor Multilevel Inverter. IEE Proc. Electric Power Appl., 2004, vol. 151, no. 2, pp. 239–248.

Jin B.-S., Lee W.-K., Kim T.-J., Kang D.-W., Hyun D.-S. A Study on the Multi-Carrier PWM Methods for Voltage Balancing of Flying Capacitor in the Flying Capacitor Multi-Level Inverter. Proc. Conf.IEEE Ind. Electron. Soc., 2005, p. 6.

Ilves K., Harnefors L., Norrga S., Nee H.-P. Analysis and Operation of Modular Multilevel Converters with Phase-Shifted Carrier PWM. IEEE Transactions on Power Electronics, January 2015, vol. 30, no. 1, pp. 268–283.

Darusl R., Konstantinoul G., Poul J., Ceballos S., Agelidisl V.G. Comparison of Phase-Shifted and Level-Shifted PWM in the Modular Multilevel Converter. Power Electronics Conference (IPECHiroshima 2014 – ECCE-ASIA), 2014 International, pp. 3764–3770.


Ссылки

  • На текущий момент ссылки отсутствуют.