Математическая модель асинхронного двигателя с последовательно соединенными обмотками статора и ротора

Татьяна Андреевна Функ, Юрий Семенович Усынин, Артем Игоревич Гребнев, Дмитрий Алексеевич Поносов

Аннотация


С целью ресурсо- и энергосбережения необходимо модернизировать нерегулируемые электроприводы большого класса рабочих механизмов, у которых по условиям технологического процесса требуется относительно длительное снижение скорости при уменьшении статических нагрузок. Актуальным является вопрос выбора систем управления электроприводами рассматриваемых механизмов по экономическим и эксплуатационным критериям. Для регулирования скорости в них авторы предлагают использовать системы импульсно-векторного управления асинхронным двигателем с фазным ротором (СИВУ АД с ФР), но существенным недостатком данных систем является наличие датчика положения на валу двигателя, обусловленное принципом работы. Замена механического датчика на систему косвенного определения положения ротора в СИВУ затруднена в связи с отсутствием соответствующего математического описания электромагнитных процессов в схемах с нетрадиционным подключением обмоток статора и ротора. Для решения данной проблемы авторами разработана математическая модель СИВУ АД с ФР как многофазной, несимметричной системы. Выведены зависимости индуктивностей, потокосцеплений, напряжений обмоток двигателя, тока цепи и электромагнитного момента от углового положения ротора. Приведены результаты математического моделирования и экспериментального исследования схемы с последовательно соединенными обмотками статора и ротора асинхронного двигателя при питании от источника синусоидального напряжения. Определена принципиальная возможность вычисления положения ротора в СИВУ АД с ФР по угловым зависимостям падений напряжений на обмотках статора и ротора.

Ключевые слова


промышленные механизмы; электропривод; асинхронный двигатель; фазный ротор; система импульсно-векторного управления; косвенное определение положения; математическая модель.

Полный текст:

PDF

Литература


Leznov B.S. Energosberezhenie i reguliruemyy privod v nasosnykh i vozdukhoduvnykh ustanovkakh [Energy Saving and the Controlled Drive in Pumping and Blowing Installations]. Moscow, Energopromizdat Publ., 2006. 359 p.

Sarvarov A.S. Energosberegayushchiy elektroprivod na osnoe NPCh-AD s programmnym formirovaniem napryazheniya [Energy Efficient Electric Drive Based on CD-AD with Program Voltage Generation Control]. Magnitogorsk, MSTU Publ., 2001. 206 p.

Barats E.I., Braslavskiy I.Ya. [Voltage Control Unit with an Alerting Structure for the Frequency Transformer V/f Control System]. Elektroprivody peremennogo toka: Trudy XII nauchno-tekhnicheskoy konf [DC Electric Drives: Papers of XII Research and Technology Conference], Ekaterinburg, USTU Publ., 2001, pp. 117–120. (in Russ.)

Vishnu Kalaiselvan Arun Shankara, Subramaniam Umashankara, Shanmugam Paramasivamb, Norbert Hanigovszkic. A Comprehensive Review on Energy Efficiency Enhancement Initiatives in Centrifugal Pumping System. Applied Energy, 2016, vol. 181, pp 495–513.

Mironov L.M. [Substantiation of the Cycloconverters Spheres of Usage]. Trudy III Mezhdunarodnoy (XIV Vserossiyskoy) konferentsii po avtomatizirovannomu elektroprivodu AEP 2001 [Papers of the III International (XIV Russian) Conference on Automated Electric DriveAED 2001], Nizhny Novgorod, Vektor-TiS, 2001, p. 222. (in Russ.)

Valov A.V., Funk T.A., Zhuravlev A.M., Sidorenko N.Y. Circuits of a Pulse-Vector Controlling Alternate Current Motor Drive. Russian Electrical Engineering, 2014, vol. 85 (10), pp. 613–615. DOI: 10.3103/S1068371214100150

Funk T.A., Saprunova N.M., Belousov E.V., Zhuravlev A.M. Indirect Determination of the Displacement in an Electric Motor Drive. Russian Electrical Engineering, 2015, vol. 86 (12), pp. 716–718. DOI: 10.3103/S106837121512007X

Holtz J. Sensorless Control of Induction Motor Drives. Proceedings of the IEEE, 2002, vol. 90 (8), pp. 1359–1394. DOI: 10.1109/JPROC.2002.800726

Tabbache B., Rizoug N., Benbouzid M.E.H., Kheloui A. A Control Reconfiguration Strategy for Postsensor FTC in Induction Motor-based EVs. IEEE Transactions on Vehicular Technology, 2013, vol. 62 (3), pp. 965–971. DOI: 10.1109/TVT.2012.2232325

Pal A., Kumar R., Das S. Sensorless Speed Control of Induction Motor Driven Electric Vehicle Using Model Reference Adaptive Controller. Energy Procedia, 2015, vol. 90, pp. 540–551. DOI: 10.1016/j.egypro.2016.11.222

Dominic D.A., Chelliah T.R. Analysis of Field-Oriented Controlled Induction Motor Drives under Sensor Faults and an Overview of Sensorless Schemes. ISA Transactions, 2015, vol. 53 (5), pp. 1680–1694. DOI: 10.1016/j.isatra.2014.04.008

Traoré D., Leon De J., Glumineau A. Adaptive Interconnected Observer-Based Backstepping Control Design for Sensorless Induction Motor. Automatica, 2012, vol. 48 (4), pp. 682–687. DOI: 10.1016/j.automatica.2012.01.018

Usynin Yu.S., Smirnov Yu.S., Kozina T.A., Valov A.V. Pulse-vector Control with Indirect Determination of Rotor Angular Position. Russian Electrical Engineering, 2013, vol. 84 (10), pp. 566–571. DOI: 10.3103/S1068371213100106

Usynin Yu.S., Valov A.V., Kozina T.A. Asynchronous Electric Drive with Pulse-Vector Control. Russian Electrical Engineering, 2011, vol. 82 (3), pp. 134–137. DOI: 10.3103/S1068371211030102.

Vol'dek A.I. Elektricheskie mashiny [Electrical Motors]. Leningrad, Energiya Publ., 1974. 840 p.

Vazhnov A.I. Perekhodnye protsessy v mashinakh peremennogo toka [Transient Processes in Alternating Current Motors]. Leningrad, Energiya Publ., 1986. 256 p.

Andreev V.P., Sabinin Yu.A. Osnovy elektroprivoda [Fundamentals of Electric Drive], Moscow, Gosenergoizdat Publ., 1963. 772 p.

AlekseevYu.V., Bogoslovskiy A.P., Pevzner E.M. Kranovoe elektrooborudovanie: spravochnik [Crane Electrical Equipment: Reference Book]. Moscow, Energiya Publ., 1979. 240 p.




DOI: http://dx.doi.org/10.14529/power170111

Ссылки

  • На текущий момент ссылки отсутствуют.