Методика оценки эффективности внедрения источников распределенной генерации

Александра Владимировна Варганова, Ирина Николаевна Гончарова, Юлия Марсовна Байрамгулова, Валерия Артуровна Ефимова

Аннотация


Рассматривается вопрос об оценке технико-экономической эффективности установки объектов распределенной генерации в условиях действующих или проектируемых систем электроснабжения. Алгоритм расчета адаптирован к программно-вычислительному комплексу КАТРАН-OptActivePower и позволяет на основании технико-экономических моделей генераторов, заданной конфигурации электрической сети и параметров ее оборудования определять основные показатели эффективности: затраты на потери мощности в сети, суммарные затраты с учетом издержек на обслуживание и ремонт, капитальные вложения в оборудование. Эффективность внедрения источников энергии оценивается путем сравнения затрат на выработку и передачу мощности в сети без дополнительных источников с затратами, полученными в результате установки источников, при этом считается, что срок окупаемости установки составляет 8 лет. При расчетах учитываются технологические особенности работы генераторов. В статье приведен пример оценки эффективности установки генераторов в условиях действующей системы электроснабжения.


Ключевые слова


распределенная генерация; экономический эффект; оптимизация; тепловая электростанция; тариф на электроэнергию; система электроснабжения

Полный текст:

PDF

Литература


Ackermann T., Anderson G., Soder L. Distributed Generation: A Definition. Electric Power Systems Re-search, 2001, no. 57, pp. 195–204. DOI: 10.1016/s0378-7796(01)00101-8

Nikulin P.A. Problems and Prospects of Development of Distributed Generation in the Russian Federation. Economics and Society, 2018, no. 6 (49), pp. 802–804. (in Russ.)

Kyrylenko O.V., Pavlovskyi V.V., Pavlovskyi V.V. Technical Aspects of Adoption of Distributed Genera-tion Sources in Electric Mains. Tekhnichnaelektrodynamika, 2011, no. 1, pp. 46–53.

Varganova A.V. About Optimization Methods of Power Supply System and Network Modes. Bulletin of South Ural State University. Series “Power Engineering”, 2017, Т. 17, no. 3, pp. 76–85. (in Russ.) DOI: 10.14529/power170309

Malafeev A.V., Kochkina A.V., Panova E.A. Optimal Distribution Between the Generators of Power Plant Capacity of Industrial Enterprises with Long-Term Pofaznom Repair Equipment Supplying Networks. The Vestnik of Nosov Magnitogorsk State Technical University, 2012, no. 4 (40), pp. 78–81. (in Russ.)

Kochkina A.V. Dynamic Programming Method for Solving Problems of Optimum Allocation of Active Capacity Between Dissimilar Generating Sources of Own Power Plants, Steel Mills. Urals Science and Produc¬tion, 2012, no. 8, pp. 204–209. (in Russ.)

Malafeev A.V., Igumenshhev V.A., Khlamova A.V. Analysis of Optimum Modes of Turbogenerators of Own Power Plants of OJSC Magnitogorsk Iron and Steel Works. Russian Electromechanics, 2011. no. 4,

pp. 111–114. (in Russ.)

Varganova A.V. The Algorithm of the Intra-Station Unit Optimization of Operating Modes of Boiler Units and Turbo Generators for Industrial Power Plants. Industrial Power Engineering, 2018, no. 1, pp. 17–22. (in Russ.)

Varganova A.V., Malafeev A.V. Energy Efficient Heat Distribution in Industrial-Sized Power Plants Using Computers. Electrical Stations, 2017, no. 11 (1036), pp. 23–27. (in Russ.)

Eroshenko S.A., Karpenko A.A., Kokin S.E., Pazderin A.V. Optimization of Location and Power of Small Generation in Distribution Networks. Proceedings of higher educational establishments. Energy problem, 2012, no. 1-2, pp. 82–89. (in Russ.)

Baembitov R.A., Salenik D.V. Impact of Distributed Generation on Network settings. Power through

the Eyes of Young People, 2015, pp. 272–275. (in Russ.)

Akhtulov A.L., Leonov E.N., FedorovV. Technique of Optimizing the Energy Sources in Electrical Sys-tems with Distributed Generation. Speaker Systems, Mechanisms and Machines, 2016, no. 1, pp. 20–25. (in Russ.)

Tarasenko V.V. Algorithmization of Calculations of Electric Networks with Distributed Generation.

rd Scientific Conference “Science of SUSU”. Section of Technical Sciences, 2011, pp. 238–242. (in Russ.)

Ilyushin P.V. Analysis of the Impact of Distributed Generation on Algorithms and Automated Device Configuration Parameters of Power Systems. Energetic, 2018, no. 7, pp. 21–26. (in Russ.)

Ilyushin P.V. Analysis of the Peculiarities of Internal Power Supply Networks of Industrial Enterprises with Distributed Generation Facilities. Energetik, 2016, no. 12, pp. 21–25. (in Russ.)

Eroshenko S.A. A Model of an Intellectual System for Assessing the Effectiveness of the Implementation of Distributed Generation Facilities. Materials of the VIII International Scientific and Technical Conference, 2017, pp. 41–44. (in Russ.)

Alexandrova A. Ya. Economic Evaluation of the Choice of Equipment for Small Generation Facilities. Science. Technologies. Innovations, 2015, pp. 160–162. (in Russ.)

Sakai S., Kawasaki S., Matsuki J., Mori K., Fuwa Y., Hayashi Y., Wakao S., Baba J., Yokoyama A., Hojo M. Development of Distribution Network Equipment to Support the Solution of Problem of Connecting Distribut-ed Generators (Answer) and Verification Experiment of Active Coordinated Operation of Distributed Generator and Di¬stribution Network. IEEJ transactions on power and energy, 2010, no. 5, pp. 473–483. DOI: 10.1541/ieejpes.130.473

Acharya N., Mahat P., Mithulananthan N. An Analytical Approach for DG Allocation in Primary Distri-bution Network. Electrical Power Systems Research, 2007.

Georgilakis P.S., Hatziargyriou N.D. Optimal Distributed Generation Placement in Power Distribution Net-works: Models, Methods, and Future Research. IEEE Trans. Power Syst, 2013, Vol. 28, no 3. pp 3420–3428. DOI: 10.1109/tpwrs.2012.2237043

Meera Shareef Sd., Vinod Kumar T. A Review on Models and Methods for Optimal Placement of Dis-tributed Generation in Power Distribution Systems. UEAR, 2014, vol. 4, iss. Spl-1.

Bin Humayd A. Distribution System Planning with Distributed Generation: Optimal Versus Heuristic Ap-proach: A Thesis for the Degree of Master of Applied Science in Electrical and Computer Engineering. University of Waterloo, Waterloo, Ontario, Canada, 2011. 72 p.

Ma J., Wang Y., Yang L. Size and Location of Distributed Generation in Distribution System Based on Immune Algorithm. The 2nd International Conference on Complexity Science & Information Engineering, Sys-tems Engineering Procedia 4, 2012, pp. 124–132. DOI: 10.1016/j.sepro.2011.11.057

Varganova A.V., Malafeev A.V. KATRAN-OptActivePower. Software RF, no. 2019618397, 2019.

Karapetyan I.G., Fajbisovich D.L., Shapiro I.M. Handbook of electrical network design. Moscow, ENAS Publ., 2012. 376 p.




DOI: http://dx.doi.org/10.14529/power190406

Ссылки

  • На текущий момент ссылки отсутствуют.