Метод подавления акустического эха на основе рекуррентной нейронной сети и алгоритма кластеризации
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Benesty J., Jensen J., Christensen M., Chen J. Speech Enhancement: A Signal Subspace Perspective. Cambridge: Elsevier Academic Press, 2014. 129 p. DOI: 10.1016/C2013-0-16082-5.
Lee C.M., Shin J.W., Kim N.S. DNN-based residual echo suppression. Interspeech 2015, Dresden, Germany, September 6–10, 2015. ISCA, 2015. P. 1775–1779. DOI: 10.21437/Interspeech.2015-412.
Zhang H., Wang D. Deep learning for acoustic echo cancellation in noisy and double-talk scenarios. Interspeech 2018, Hyderabad, India, September 2–6, 2018. ISCA, 2018. P. 3239–3243. DOI: 10.21437/Interspeech.2018-1484.
Zhang H., Tan K., Wang D. Deep learning for joint acoustic echo and noise cancellation with nonlinear distortions. Interspeech 2019, Graz, Austria, September 15–19, 2019. ISCA, 2019. P. 4255–4259. DOI: 10.21437/Interspeech.2019-2651.
Wang D. On Ideal Binary Mask As the Computational Goal of Auditory Scene Analysis. Speech Separation by Humans and Machines / ed. by P. Divenyi. Springer, Boston, MA, 2005. P. 181–197. DOI: 10.1007/0-387-22794-6_12.
Li N., Loizou P.C. Factors influencing intelligibility of ideal binary-masked speech: Implications for noise reduction. J. Acoust. Soc. Am. 2008. Vol. 123, no. 3. P. 1673–1682. DOI: 10.1121/1.2832617.
Brungart D.S., Chang P.S., Simpson B.D., Wang D. Isolating the energetic component of speech-on-speech masking with ideal time-frequency segregation. J. Acoust. Soc. Am. 2006. Vol. 120, no. 6. P. 4007–4018. DOI: 10.1121/1.2363929.
Benesty J., Gänsler T., Morgan D.R., et al. Advances in network and acoustic echo cancellation. Springer, Berlin, Heidelberg, 2001. 222 p. DOI: 10.1007/978-3-662-04437-7.
Enzner G., Buchner H., Favrot A., Kuech F. Chapter 30 - Acoustic Echo Control. Academic Press Library in Signal Processing: Volume 4 / ed. by J. Trussell, A. Srivastava, A.K. Roy-Chowdhury, et al. Elsevier, 2014. P. 807–877. DOI: 10.1016/B978-0-12-396501-1.00030-3.
Hamidia M., Amrouche A. A new robust double-talk detector based on the Stockwell transform for acoustic echo cancellation. Digital Signal Processing. 2017. Vol. 60. P. 99–112. DOI: 10.1016/j.dsp.2016.09.001.
Ykhlef F., Ykhlef H. A post-filter for acoustic echo cancellation in frequency domain. 2014 Second World Conference on Complex Systems (WCCS), Agadir, Morocco, Nov. 10–12, 2014. IEEE, 2014. P. 446–450. DOI: 10.1109/ICoCS.2014.7060938.
Kuech F., Kellermann W. Nonlinear residual echo suppression using a power filter model of the acoustic echo path. 2007 International Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, Honolulu, HI, USA, April 15–20, 2007. IEEE, 2007. P. I-73–I-76. DOI: 10.1109/ICASSP.2007.366619.
Malek J., Koldovský Z. Hammerstein model-based nonlinear echo cancelation using a cascade of neural network and adaptive linear filter. 2016 IEEE International Workshop on Acoustic Signal Enhancement (IWAENC), Xi’an, China, Sept. 13–16, 2016. IEEE, 2016. P. 1–5. DOI: 10.1109/IWAENC.2016.7602906.
Yang F., Wu M., Yang J. Stereophonic acoustic echo suppression based on wiener filter in the short-time fourier transform domain. EEE Signal Processing Letters. 2012. Vol. 19, no. 4. P. 227–230. DOI: 10.1109/LSP.2012.2187446.
Wang D., Chen J. Supervised speech separation based on deep learning: an overview. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2018. Vol. 26, no. 10. P. 1702–1726. DOI: 10.1109/TASLP.2018.2842159.
Wang Y., Narayanan A., Wang D. On training targets for supervised speech separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2014. Vol. 22, no. 12. P. 1849–1858. DOI: 10.1109/TASLP.2014.2352935.
Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997. Vol. 9, no. 8. P. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.
Erdogan H., Hershey J.R., Watanabe S., Roux J.L. Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, April 19–24, 2015. IEEE, 2015. P. 708–712. DOI: 10.1109/ICASSP.2015.7178061.
Weninger F., Erdogan H., Watanabe S., et al. Speech Enhancement with LSTM Recurrent Neural Networks and its Application to Noise-Robust ASR. Latent Variable Analysis and Signal Separation. Vol. 9237 / ed. by E. Vincent, A. Yeredor, Z. Koldovský, P. Tichavský. Cham: Springer, 2015. P. 91–99. Lecture Notes in Computer Science. DOI: 10.1007/978-3-319-22482-4_11.
Chen J., Wang D. Long short-term memory for speaker generalization in supervised speech separation. The Journal of the Acoustical Society of America. 2017. Vol. 141, no. 6. P. 4705–4714. DOI: 10.1121/1.4986931.
Zermini A. Deep Learning for Speech Separation: PhD thesis / Zermini Alfredo. University of Surrey, faculty of engineering, physical sciences, Centre for Vision, Speech, Signal Processing (CVSSP), South East of England, UK, 2020. URL: https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/99512310402346#file-0.
Xia S., Li H., Zhang X. Using Optimal Ratio Mask as Training Target for Supervised Speech Separation. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, Dec. 12–15, 2017. IEEE, 2017. P. 163–166. DOI: 10.1109/APSIPA.2017.8282021.
Palmqvist M. Methods and algorithms for quality and performance evaluation of audio conferencing systems: PhD thesis / Palmqvist Maria. Umeå University, Faculty of Science, Technology, Department of Physics, Sweden, 2013. URL: http://umu.diva-portal.org/smash/get/diva2:630382/FULLTEXT01.pdf.
ITU-T Recommendation P. 862, Perceptual Evaluation of Speech Quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. 2001. URL: https://www.itu.int/rec/T-REC-P.862-200102-I/en.
Fu S.-W., Liao C.-F., Tsao Y. Learning with Learned Loss Function: Speech Enhancement with Quality-Net to Improve Perceptual Evaluation of Speech Quality. EEE Signal Processing Letters. 2020. Vol. 27. P. 26–30. DOI: 10.1109/LSP.2019.2953810.
Allen J.B., Berkley D.A. Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America. 1998. Vol. 65, no. 4. P. 943–950. DOI: 10.1121/1.382599.
DOI: http://dx.doi.org/10.14529/cmse220204