MULTI-AGENT MODEL OF MULTI-NOMENCLATURE SMALL BATCH PRODUCTION
Abstract
Keywords
Full Text:
PDF (Русский)References
Salamati-Hormozi H., Zang Z.H., Zarei O., Ramezanian R. Trade-off between the costs and the fairness for a collaborative production planning problem in make-to-order manufacturing. Computers &Industrial Engineering, 2018, vol. 126, pp. 421–434. DOI: 10.1016/j.cie.2018.09.044
Denkena B., Dittrich M.A., Jacob S. Methodology for integrative production planning in highly dynamic environments. Production Engineering, 2019, vol. 13, pp. 317– 324. DOI: 10.1007/s11740-019-00889-0
Han J.H., Lee J.Y., Kim Y.D. Production planning in a two-level supply chain for production-time-dependent products with dynamic demands. Computers &Industrial Engineering, 2019, vol. 126, pp. 1–9. DOI: 10.1016/j.cie.2019.05.036
Bruni M.E., Puglia Pugliese L. Di, Beraldi P., Guerriero F. A computational study of exact approaches for the adjustable robust resource-constrained project scheduling problem. Computers and Operations Research, 2018, vol. 99, pp. 178–190. DOI: 10.1016/j.cor.2018.06.016
Garmdare H.S., Lotfi M.M., Honarvar M. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments. Journal of Industrial Engineering, 2018, vol. 14, pp. 55–64. DOI: 10.1007/s40092-017-0205-y
Alvarez-Gill N., Rosillo R., De la Fuente D., Pino R. A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing. Central European Journal of Operations Research, 2020. DOI: 10.1007/s10100-020-00701-w
Goodall P., Sharpe R., West A. A date-driven simulation to support remanufacturing operations. Computers in Industry, 2019, vol. 105, pp. 48–60. DOI: 10.1016/j.compind.2018.11.001
Lofving M., Almstrom P., Jarebrant C., Wadman B., Widfeldt M. Evaluation of flexible automation for small batch production. Procedia Manufacturing, 2018, vol. 25, pp. 177–184. DOI: 10.1016/j.promfg.2018.06.072
Beemsterboer B., Teunter R., Land M., Bokhorst J. Integrating make-to-order and make-to-stock in job shop control. International Journal of Production Economics, 2017, vol. 185, pp. 1–10. DOI: 10.1016/j.ijpe.2016.12.015
Kapulin D.V., Russkikh P.A. Analisis and improvement of production planning within small-batch make-to-order production. Journal of Physics: Conference Series, 2020, vol. 1515, no. 2. DOI: 10.1088/1742-6596/1515/2/022072
Hermmati S., Ebadian M., Nahvi A. A new decision making structure for managing arriving orders in MTO environments. Expert Systems with Application, 2012, vol. 39, no. 3, pp. 2669–2676. DOI: 10.1016/j.eswa.2011.08.122
Jeon S.M., Gitae K. A survey of simulation modeling techniques in production planning and control (PPC). Production Planning & Control, 2016, vol. 27, iss. 5, pp. 360–377. DOI: 10.1080/09537287.2015.1128010
Barlas P., Heavey C. Automation of input data to discrete event simulation for manufacturing: A review. International Journal of Modeling, Simulation, and Scientific Computing, 2016, vol. 7, no. 1. DOI: 10.1142/S1793962316300016
Mokshin V.V., Kirpichnikov A.P., Soiko A.I. Simulation and optimization of the cargo terminal in the AnyLogic environment. Journal of Physics: Conference Series, 2019, vol. 1368. DOI: 10.1088/1742-6596 /1368/4/042082
Русских П.А., Капулин Д.В. Анализ решений для создания и реализации механизмов адаптивного планирования позаказного производства. Вестник МГТУ «Станкин». 2021. № 1 (56). С. 44–48. [Russkikh P.A., Kapulin D.V. [Analysis of solutions for the creation and implementation of adaptive planning mechanisms for make-to-order production]. Vestnik MSTU “STANKIN”, 2021, vol. 1, no. 56, pp. 44–48. (in Russ.)].
DOI: http://dx.doi.org/10.14529/ctcr210406
Refbacks
- There are currently no refbacks.