A Simulation-Based Method for Supply Temperature Optimization in District Heating System
Abstract
Numerous district heating systems in Russian Federation are still characterized by consumers which are not equipped with an automated individual heating system. The main approach to control heat energy consumption in such systems is changing of heating plant supply temperature. With the diverse changes of pipeline network structure and changes of consumers’ thermohydraulic characteristics, on-line determination of optimal heating plant supply temperature is the pressing issue.
The article is devoted to supply temperature optimization at the district heating plant using simulations. It deals with method of supply temperature optimization based on penalty functions considering indoor temperature and heat energy consumed. The authors investigate the influence of weights of concurrent economy and indoor temperature comfort estimates on simulation results of the optimization task using the specified method.
Keywords
Full Text:
PDF (Русский)References
Nuorkivi A. District Heating and Cooling Policies Worldwide. Advanced District Heating and Cooling (DHC) Systems, 2015, pp. 17–41.
Lund H., Werner S., Wiltshire R., Svendsen S., Thorsen J.E., Hvelplund F., Mathiesen B.V. 4th Generation District Heating (4GDH) Integrating Smart Thermal Grids into Future Sustainable Energy Systems. Energy, 2014, vol. 68, pp. 1–11.
Brand M., Della Rosa A., Svendsen S. Energy-Efficient and Cost-Effective In-House Substations Bypass for Improving Thermal and DHW (Domestic Hot Water) Comfort in Bathrooms in Low-Energy Buildings Supplied by Low-Temperature District Heating. Energy, 2014, vol. 67, pp. 256–267.
Oliker I. Steam Turbines for Cogeneration Power Plants. J. Eng. Power, 1980, vol. 102, pp. 482–485.
Апарцев М.М. Наладка водяных систем централизованного теплоснабжения. М.: Энергоатомиздат, 1983. 204 с. [Apartsev M.M. Naladka vodyanykh sistem tsentralizovannogo teplosnabzheniya (Adjustment of Water Systems of the Centralized Heat Supply). Moscow, Energoatomizdat, 1983. 204 p.)]
Madsen H., Sejling K., Sogaard H.T., Palsson O.P. On Flow and Supply Temperature Control in District Heating Systems. Heat Recovery Systems and CHP, 1994, vol. 14, pp. 613–620.
Bohm B., Danig P.O. Monitoring the Energy Consumption in a District Heated Apartment Building in Copenhagen, with Specific Interest in the Thermodynamic Performance. Energy and Buildings, 2004, vol. 36, pp. 229–236.
Iacob M., Andreescu G.D., Muntean N. SCADA System for a Central Heating and Power Plant. Proceedings of the 5th International Symposium on Applied Computational Intelligence and Informatics. Timisoara, 2009, pp. 159–164.
Shnayder D., Abdullin V. A WSN-Based System for Heat Allocating in Multi-Flat Buildings. 36th International Conference on Telecommunications and Signal Processing, 2013, pp. 181–185.
Lukas G., Swan V., Ugursal I. Modeling of End-Use Energy Consumption in the Residential Sector: a Review of Modeling Techniques. Renewable and Sustainable Energy Reviews, 2009, vol. 13, pp. 1819–1835.
Allegrinia J., Orehounigb K., Mavromatidis G., Rueschd F., Dorerb V., Evins R. A Review of Modelling Approaches and Tools for the Simulation of District-Scale Energy Systems. Renewable and Sustainable Energy Reviews, 2015, vol. 52, pp. 1391–1404.
Lima S., Parkb S., Chungb H., Kimc M., Baikd Y., Shin S. Dynamic Modeling of Building Heat Network System Using Simulink. Applied Thermal Engineering, 2015, vol. 84, pp. 375–389.
СанПиН 2.2.4.548–96. Гигиенические требования к микроклимату производственных помещений. Утв. Госкомсанэпиднадзором России 01.10.1996. М.: Информ.-издат. центр Минздрава России, 1997. 20 с. [SanPiN 2.2.4.548–96. (Hygienic Requirements to Occupational Microclimate). Available at: http://docs.cntd.ru/document/ 901704046 (accessed 23 September 2016). (in Russ.)]
ГОСТ 30494–2011. Здания жилые и общественные. Параметры микроклимата в помещениях. Утв. Федеральным агентством по техническому регулированию и метрологии 01.01.2013. М.: Стандартинформ, 2013. 15 с. [GOST 30494–2011. (Residential and Public Buildings. Microclimate Parameters for Indoor Enclosures. Available at: http://proekt-tmn.ru/06.%20GOST%2030494-2011.pdf (accessed 23 September 2016). (in Russ.)]
Шишкин М.В., Шнайдер Д.А. Моделирование теплогидравлических систем в среде VisSim. Вестник Южно-Уральского государственного университета. Серия «Компьютерные технологии, управление, радиоэлектроника». 2004. Вып. 3. № 9 (38). С. 120−123. [Shishkin M.V., Shnaider D.A. (Simulation of Thermal-Hydraulic Systems in VisSim Environment). Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics, 2004, iss. 3, no. 9 (38), pp. 120–123. (in Russ.)]
Termis Software. Available at: http://www.schneider-electric.com/en/product-range/61418-termis-software/ (accessed 23 September 2016).
PÖYRY: DH Network Simulations – Important Tool in Operation and Construction of DHC Systems. Available at: http://www.lsta.lt/files/events/2011-05-09-10_EHP%20kongresas/geguzes%2010%20d_pranesimai/16_Poyry_DistrictHeatingNetworkSimulations_v3.pdf (accessed 23 September 2016).
Basalaev A.A., Barbasova T.A., Shnayder D.A. Simulation Study on Supply Temperature Optimization of University Campus Heating System. Procedia Engineering. 2015, vol. 129, pp. 587–594.
DOI: http://dx.doi.org/10.14529/ctcr170102
Refbacks
- There are currently no refbacks.