ПРОГНОЗИРОВАНИЕ И УПРАВЛЕНИЕ ПРОПУСКНОЙ СПОСОБНОСТЬЮ ПОЛОСЫ НА РЕГУЛИРУЕМОМ ПЕРЕКРЕСТКЕ

Владимир Дмитриевич Шепелев, Владимир Анатольевич Городокин, Иван Сергеевич Слободин, Кирилл Владимирович Хазюков

Аннотация


Точное прогнозирование параметров транспортного потока в режиме реального времени является основой для принятия решения о динамическом управлении полосой движения, которое играет важную роль в уменьшении заторов. Существующие методы не способны запоминать долгосрочные зависимости для получения точного результата предсказания последовательности. В нашем исследовании мы сконцентрировались на разработке алгоритма по адаптивной настройке циклов светофорного регулирования, обеспечивающего проезд всех групповых транспортных средств на основе применения нейронных сетей R-CNN и YOLOv4. В исследовании для прогнозирования потока трафика мы использовали уличные камеры с большим углом обзора. В процессе обучения адаптированы долгосрочная кратковременная память и рекуррентная нейронная сеть. В алгоритмах обучения нейронных сетей учитываются динамические габариты транспортных средств; дискретные параметры очереди перед перекрестком и длительность цикла. Результатом исследования стала разработка алгоритма по адаптивной настройке продолжительности разрешающего такта светофорного объекта с учетом параметров транспортного потока в задачах устранения или минимизации возможности возникновения заторной ситуации

Ключевые слова


нейронные сети, компьютерное зрение, пропускная способность перекрестка, умный свето-фор

Полный текст:

PDF

Литература


Grents A., Varkentin V., Goryaev N. Determin-ing vehicle speed based on video using convolutional neural network. Transportation Research Procedia, 2020, vol. 50, pp. 192–200.

Shepelev V., Glushkov A., Almetova Z., Mav-rin V. A study of the travel time of intersections by vehicles using computer vision. 6th International Conference on Vehicle Technology and Intelligent Transport Systems. Prague, Czech Republic, 2020.

Prasad D., Kapadni K., Gadpal A., Visave M., Sultanpure K. HOG, LBP and SVM based Traffic Density Estimation at Intersection. IEEE Pune Section International Conference. Pune, India, 2019.

Khazukov K., Shepelev V., Karpeta T., Sha-biev S., Slobodin I., Charbadze I., Alferova I. Real-time Monitoring of Traffic Parameters. Journal of Big Data, 2020, vol. 7 (1), no. 84.

Shepelev V., Aliukov S., Nikolskaya K., Das A., Slobodin I. The Use of Multi-Sensor Video Surveil-lance System to Assess the Capacity of the Road Network, Transport and Telecommunication, 2020, vol. 21 (1), pp. 15–31.

Jeff Ban X., Hao P., Sun Z. Real Time Queue Length Estimation for Signalized Intersections Using Travel Times from Mobile Sensors. Transportation Research Part C: Emerging Technologies, 2011, vol. 19 (6), pp. 1133–1156.

Ramezani M., Geroliminis N. Queue Profile Es-timation in Congested Urban Networks with Probe Data. Computer-Aided Civil and Infrastructure Engi-neering, 2015, vol. 30 (6), pp. 414–432.

Li F., Tang K., Yao J., Li K. Real-Time Queue Length Estimation for Signalized Intersections Using Vehicle Trajectory Data. Transportation Research Record, 2017, vol. 2623 (1), pp. 49–59.

Murat Y.S., Gedizlioglu E. A Fuzzy Logic Mul-ti-Phased Signal Control Model for Isolated Junctions. Transportation Research Part C: Emerging Technol-ogies, 2005, vol. 13 (1), pp. 19–36.

Li J., Zhang H. Study on Optimal Control and Simulation for Urban Traffic Based on Fuzzy Logic. International Conference on Intelligent Computation Technology and Automation. Hunan, China, 2008.

Wu S., Bi Y., Wang G., Ma Y., Lu M., Xu K. Adaptive Fuzzy Logic Traffic Signal Control Based on Cuckoo Search Algorithm. Smart Innovation, Sys-tems and Technologies, 2019, vol. 127, pp. 107–117.

Chowdhury M.F., Ryad Ahmed Biplob M., Uddin J. Real Time Traffic Density Measurement Us-ing Computer Vision and Dynamic Traffic Control. Joint 7th International Conference on Informatics, Electronics and Vision and 2nd International Con-ference on Imaging, Vision and Pattern Recognition. Kitakyushu. Japan, 2018.

Das A., Pai S., Shenoy V.S., Vinay T., Shylaja S.S. D2: Real-time Dehazing in Traffic Video Analyt-ics by Fast Dynamic Bilateral Filtering. Advances in Intelligent Systems and Computing, 2020, vol. 1024, pp. 127–137.

Видеонаблюдение в г. Челябинск [Video-nab¬lyudenie v g. Chelyabinsk [Video surveillance in Chelyabinsk]. Available at: https://cams.is74.ru/live (accessed 20.04.2021)

Fedorov A., Nikolskaia K., Ivanov S. Shepelev V., Minbaleev A. Traffic Flow Estimation with Data from a Video Surveillance Camera. Journal of Big Data, 2019, vol. 6 (1), p. 73.

Kim C, Li F, Ciptadi A, Rehg JM. Multiple Hypothesis Tracking Revisited. IEEE international conference on computer vision. Santiago, Chile, 2015.

Barth V B de O, Oliveira R, de Oliveira M A, Nascimento V E. Vehicle Speed Monitoring Using Convolutional Neural Networks. IEEE Latin America Transactions, 2019, vol. 17(06), pp. 1000–1008.

Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple Online and Real-time Tracking. IEEE interna-tional conference on image processing, Phoenix, AZ, USA, 2016.

Li C, Dobler G, Feng X, Wang Y. TrackNet: Simultaneous Object Detection and Tracking and Its Application in Traffic Video Analysis. arXiv:1902.01466, 2019.

Luo W, Yang B, Urtasun R. Fast and Furious: Real Time End-To-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net. IEEE/CVF conference on computer vision and pat-tern recognition. Salt Lake City, UT, USA, 2018.

Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, vol. 39(6), pp. 1137–1149.

Sang J, Wu Z, Guo P, Hu H, Xiang H, Zhang Q, Cai B. An Improved Yolov2 for Vehicle Detection. Sensors (Switzerland), 2018, vol. 18 (12).

He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. IEEE international conference on computer vision. Venice, Italy, 2017.

Shreyas Dixit KG, Chadaga MG, Saval-gimath SS, Ragavendra Rakshith G, Naveen Kumar MR. Evaluation and evolution of object detection techniques YOLO and R-CNN. International Journal of Recent Technology and Engineering, 2019, vol. 8(3), pp. 824–829.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE conference on computer vision and pattern recognition. – Las Ve-gas, NV, USA, 2016.

Shepelev V., Aliukov S., Glushkov A., Sha-biev S. Identification of distinguishing characteristics of intersections based on statistical analysis and data from video cameras. Journal of Big Data, 2020, vol. 7 (1), no. 46.

Отраслевой дорожный методический документ: методические рекомендации по проектированию светофорных объектов на автомобильных дорогах. ОДМ 218.6.003-2011. М., 2013. [Ot-raslevoj dorozhnyj metodicheskij dokument. Metodiche-skie rekomendacii po proektirovaniyu svetofornyh ob"ektov na avtomobil'nyh dorogah [In-dustry road guidance document. Methodological rec-ommendations for the design of traffic light objects on

mobile roads]. ODM 218.6.003-2011, 2013. Moscow, 2013.]


Ссылки

  • На текущий момент ссылки отсутствуют.