АНАЛИЗ ЭФФЕКТИВНОСТИ МЕТОДОВ ЭКСТРАКЦИИ ДЛЯ ПОЛУЧЕНИЯ РАСТИТЕЛЬНЫХ НАПИТКОВ С ОПТИМАЛЬНЫМИ СВОЙСТВАМИ

Светлана Павловна Меренкова, Дарья Григорьевна Тесалова

Аннотация


Рост рынка напитков – альтернатив натурального молока – ежегодно составляет 13,6–15,5 %. Предпочтение растительных напитков обусловлено растущим спросом на специализированные и функциональные продукты питания, этическими взглядами потребителей. Разрабатываются новые технологии, направленные на инактивацию микроорганизмов и ферментов, уменьшение размеров частиц и снижение вязкости эмульсии для повышения физической стабильности напитка. Наиболее перспективным способом обработки растительного сырья для получения стабильной коллоидной системы напитка является ультразвуковая кавитация. Цель исследования – анализ эффективности методов экстракции зернового сырья для получения растительных напитков с оптимальными свойствами. В предложенной технологической схеме получения растительного напитка осуществляют замачивание неочищенных семян конопли и зерна пшеницы на 24 часа с последующим мокрым дроблением и многоступенчатой экстракцией сухих веществ, с применением высокотемпературной или ультразвуковой обработки. Результаты исследований доказывают, что импульсная ультразвуковая обработка диспергированных семян конопли позволяет снизить значения вязкости до 1,75–1,91 mPa·s, при одновременном повышении концентрации белка (до 2,55 %), липидов (до 4,66 %) в пищевой системе растительного напитка. При ультразвуковой обработке измельченного зерна пшеницы наблюдали возрастание вязкости растительного напитка до 5,5 mPa·s, что свидетельствует об активизации гидрофильных свойств нерастворимых фракций белков, одновременно установлено улучшение экстракции сухих веществ, белка и липидов в систему напитка. Доказано, что наиболее эффективно применение ультразвуковой обработки сырья, которая обеспечивает оптимальные параметры вязкости и эмульсионной стабильности дисперсной системы, обуславливает высокое содержание питательных компонентов в составе растительного напитка. При производстве напитков на основе зерна пшеницы следует учитывать значительное содержание нерастворимых высокомолекулярных фракций, которые при взаимодействии с водой обеспечивают стабильность и вязкость системы за счет гидроколлоидных процессов.

Ключевые слова


растительные напитки; альтернативы натурального молока; семена конопли; зерно пшеницы; ультразвуковая обработка

Полный текст:

PDF

Литература


Без ГМО и без коровы. Как растительные напитки теснят молоко [No GMO and no cow. How plantbased drinks crowd milk]. Available at: https://sber.pro/publication/bez-gmo-i-bez-korovy-kak-rastitelnye-napitki-tesniat-moloko (accessed: 10.01.2021)

Егорова С.В., Ахматзиаева М.М., Ростегаев Р.С. Растительная пища будущего // Advanced science: сборник статей III Международной научно-практической конференции: в 2 ч. – 2018. – С. 134–137. [Egorova S.V., Akhmatziaeva M.M., Rostegaev R.S. Vegetable food of the future. Advanced science, in 2 pt., 2018, pp. 134–137. (in Russ.)]

Bernat N., Chafer M., Chiralt A., Gonzalez-Martınez C.Hazelnut milk fermentation using probiotic Lactobacillus rhamnosus GG and inulin. International Journal of Food Science and Technology, 2014, vol. 49, pp. 2553–2562.

Blumenfeld J. In the aisle: Delicious alternatives to dairy for you to stock, New Hope Network. 2019. Available at: http://newhope.com/food-and-beverage/aisle-delicious-alternativesdairy-you-stock. (accessed: 10.12.2020).

Bochkarev M.S., Egorova E.Yu., Reznichenko I.Yu., Poznyakovskiy V.M. Reasons for the ways of using oilcakes in food industry. Foods and Raw Materials, 2016, vol. 4, no. 1, pp. 4–12.

Briviba K., Gräf V., Walz E., Guamis B., Butz P. Ultra-high-pressure homogenization of almond milk: Physico-chemical and physiological effects. Food Chemistry, 2016, vol. 192, pp. 82–89.

Codina-Torrella I., Guamis B., Ferragut V., Trujillo A.J. Potential application of ultra-high-pressure homogenization in the physico-chemical stabilization of tiger nuts’ milk beverage. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 2017, vol. 40, pp. 42–51.

Dairy Alternatives Market by Source (Soy, Almond, Rice and Other Sources), Application (Food, Beverages, Dairy-free Probiotic Drinks and Others), Distribution Channel (Large Retail, Small Retail, Specialty Stores and Online): Global Opportunity Analysis and Industry Forecast, 2019–2026 // https://www.alliedmarketresearch.com/dairy-alternatives-market (accessed: 10.01.2021)/

Dhakal S., Giusti M.M., Balasubramaniam V.M. Effect of high-pressure processing on dispersive and aggregative properties of almond milk. Journal of the Science of Food and Agriculture, 2016, vol. 96(11), pp. 3821–3830.

Egorova E.Ju., Khmelev V.N., Morozhenko Ju.V., Reznichenko I.Ju. Production of vegetable “milk” from oilcakes using ultrasonic cavitation. Foods and Raw Materials, 2017, vol. 5, no. 2, pp. 24–35. DOI: 10.21603/2308-4057-2017-2-24-35.

Iorio M.C., Bevilacqua A., Corbo M.R., Campaniello D., Sinigaglia M., Altieri C. A case study on the use of ultrasound for the inhibition of Escherichia coli O157:H7 and Listeria monocytogenes in almond milk. Ultrasonics Sonochemistry, 2019, vol. 52, pp. 477–483.

Kohli D., Kumar S., Upadhyay S., Mishra R. Preservation and processing of soymilk: A review. International Journal of Food Science and Nutrition, 2017, vol. 2(6), pp. 66–70.

Krasulya O., Bogush V., Trishina V., Potoroko I., Khmelev S., Sivashanmugam P., Anandan S. Impact of acoustic cavitation on food emulsions. Ultrasonics Sonochemistry, 2016, vol. 30, pp. 98–102.

Lu X., Chen J., Zheng M., Guo J. et al. Effect of highintensity ultrasound irradiation on the stability and structural features of coconutgrain milk composite systems utilizing maize kernels and starch with different amylose contents. Ultrasonics Sonochemistry, 2019, vol. 5, pp. 135–148.

Maghsoudlou Y., Alami M., Mashkour M., Shahraki M.H. Optimization of ultrasound-assisted stabilization and formulation of almond milk. Journal of Food Processing and Preservation, 2015, pp. 828–839.

Mäkinen O.E., Uniacke-Lowe T., O’Mahony J.A., Arendt E.K. Physicochemical and acid gelation properties of commercial UHT-treated plant-based milk substitutes and lactose free bovine milk. Food Chemistry, 2015, vol. 168, pp. 630–638.

Makinen O.E., Wanhalinna V., Zannini E., Arendt E.K. Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition, 2016, vol. 56 (3), pp. 339–49. DOI: 10.1080/10408398.2012.761950.

Padma M., Jagannadarao P.V.K., Edukondalu L., Ravibabu G., Aparna K. Physico-chemical analysis of milk prepared from broken rice. International Journal of Current Microbiology and Applied Sciences, 2018, vol. 7(2), pp. 426–428.

Potoroko I.Yu., Kalinina I.V., Ivanova D., Kiselova-Kaneva I.D. The influence of ultrasound cavitation on the extraction level of biologically active substances from vegetative raw materials. Agrarian Bulletin of the Urals, 2017, no. 10 (164), p. 6.

Research and Markets. Dairy and dairy alternative beverage trends in the U.S. (4th 654 edn.), 2017. Dublin, Ireland, Research and Markets.

Sethi S., Tyagi S.K., Anurag R.K. Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 2016, vol. 53, iss. 9, pp. 3408–3423. DOI: 10.1007/s13197-016-2328-3.

Vanga S., Raghavan V. How well do plant-based alternatives fare nutritionally compared to cow’s milk? Journal of Food Science and Technology, 2017, vol. 55(1), pp. 10–20.

Wanga Q., Jianga J., Xionga Y.L. High pressure homogenization combined with pH shift treatment: A process to produce physically and oxidatively stable hemp milk. Food Research International, 2018, vol. 106, pp. 487–494.


Ссылки

  • На текущий момент ссылки отсутствуют.