Svetlana P. Merenkova, Oksana V. Zinina, Yulia I. Kretova


The development of technologies for deep processing of grain raw materials in order to obtain functional biological products is the most important economic aspect of the development of the agro-industrial complex. Grain is a strategic resource for food security of each country, which at the same time has a great potential of the components it contains, which determines its widespread use, both in food technologies and in the biotechnological industry. Particular attention is paid to the development of highly efficient processing technologies for this type of raw material, which can be traced in a significant amount of scientific research in this area. The purpose of the analytical review is to research current approaches to the microbial processing of grain raw materials, studying the prospects for the application of these technologies for the food industry. During the analysis of scientific data, three information blocks were identified, reflecting the main directions of research in the field of enzymatic processing of grain raw materials. First, numerous studies have proved that grain processing products have a significant biotechnological potential-they are characterized by a high content of nitrogenous and prebiotic components, essential micronutrients, and therefore are a favorable substrate for the accumulation of biomass of lactic acid microorganisms and the production of functional components with probiotic properties. Secondly, fermentation is considered as an aspect for improving the nutritional and functional characteristics of the grain. Throughout the enzymatic processing, the molecular structure of the protein changes and its digestibility improves, the synthesis and accumulation of biologically valuable components is ensured. Under the action of the microbial enzymatic pool, biopolymers are transformed, and a wide range of biologically active compounds are accumulated, such as peptides, oligosaccharides with prebiotic potential, enzymes, and polyphenolic components. And finally, during the processing of grain crops, a large number of byproducts and waste products are formed, which are a source of natural polymers, dietary fibers, and micronutrients – and therefore can become a substrate for the growth of microbial biomass. By increasing the bioavailability of components and the decomposition of antinutrient substances, fermentation can improve the nutritional value of grain waste and by-products. Currently, effective technologies for deep processing of plant resources are associated with biotechnological methods, including microbiological fermentation of grain raw materials. The results of the analytical research formed the basis of the consolidated material, which reflects the biotechnological potential of grain raw materials.

Ключевые слова

grain raw materials; microbial fermentation; probiotic products; grain processing by-products; biologically active substances

Полный текст:



Acin-Albiac M., Filannino P., Arora K., Da Ros A., Gobbetti M., Di Cagno R. 2021. Role of lactic acid bacteria phospho-β-glucosidases during the fermentation of cereal by-products. Foods, 10, 97. DOI: 10.3390/foods10010097.

Adesulu-Dahunsi A.T., Jeyaram K, Sanni A.I. 2018. Probiotic and technological properties of exopolysaccharide producing lactic acid bacteria isolated from cereal-based nigerian fermented food products. Food Control, 92, 225–31.

Agricultural crops. FAOSTAT. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/faostat/ru/#data/QC

Angelov A., Gotcheva V., Kuncheva R., Hristozova, T. 2006. Development of a new oat-based probiotic drink. Int J Food Microbiol, 12, 75–80. DOI: 10.1016/j.ijfoodmicro.2006.05.015

Anson N.M., Hemery Y.M., Bast A., Haenen G.R. 2012. Optimizing the bioactive potential of wheat bran by processing. Food Funct, 3, 62–75. DOI: 10.1039/c2fo10241b.

Arte E., Rizzello C.G., Verni M., Nordlund E, Katina K, Coda R. 2015. Impact of enzymatic and microbial bioprocessing on protein modification and nutritional properties of wheat bran. J. Agr. Food. Chem., 63:8685–93. DOI: 10.1021/acs.jafc.5b03495

Ashaolu T.J., Reale A.A. 2020. Holistic Review on Euro-Asian Lactic Acid Bacteria Fermented Cereals and Vegetables. Microorganisms, 8:1176. DOI: 10.3390/microorganisms8081176

Aydara E.F., Tutuncua S., Ozcelika B. 2020. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods, 70, 103975. DOI: 10.1016/j.jff.2020.103975.

Ayodeji Adebo O., Medina-Meza I.G. 2020. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25, 927. DOI: 10.3390/molecules25040927

Balli D., Bellumori M., Paoli P., Pieraccini G., Di Paola M., De Filippo C., Di D., Gioia Mulinacci N. 2019. Study on a fermented whole wheat: Phenolic content, activity on PTP1B enzyme and in vitro prebiotic properties. Molecules, 24:1120. DOI: 10.3390/molecules24061120

Belc N., Mustatea G., Apostol L., Iorga S., Vlăduț V.-N., Mosoiu C. 2019. Cereal supply chain waste in the context of circular economy. E3S Web of Conferences 112, 03031. DOI: 10.1051/e3sconf/201911203031

Blandino A., Al-Aseeri M.E., Pandiella S.S., Cantero D., Webb C. 2003. Cerealbased ferment-ed foods and beverages. Food Res. Int., 36:527–43. DOI: 10.1016/S0963-9969(03)00009-7

Capozzi V., Russo P., Fragasso M., De Vita P., Fiocco D., Spano G. 2012. Biotechnology and pasta-making: lactic acid bacteria as a new driver of innovation. Front Microbiol, 3, 94. DOI: 10.3389/fmicb.2012.00094

Certík M., Adamechová Z., Guothová L. 2013. Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid state fermentations. J. Biotechnol, 168, 130–4. DOI: 10.1016/j.jbiotec.2013.03.016

Charalampopoulos D., Pandiella S.S., Webb C. 2002. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J. Appl. Microbiol., 92, 851–9. DOI: 10.1046/j.1365-2672.2002.01592.x

Chaves-López C., Rossi C., Maggio F., Paparella A., Serio A. 2020. Changes occurring in spontaneous maize fermentation: An overview. Fermentation, 6, 36. DOI: 10.3390/fermentation6010036

Decloedt A.I., Van Landschoot A., Watson H., Vanderputten D., Vanhaecke L. 2017. Plant-based beverages as good sources of free and glycosidic plant sterols. Nutrients, 10(1), DOI: 10.3390/nu10010021.

Dhillon G.S., Kaur S., Oberoi H.S., Spier M.R., Brar S.K. 2017. Agricultural-based protein by-products: Characterization and applications. In G.S. Dhillon (Ed.). Protein Byproducts. 21–36. Edmonton AB, Canada: Academic Press, Elsevier. DOI: 10.1016/b978-0-12-802391-4.00002-1

Do Prado F.G., Miyaoka M.F., Pereira G.V.M., Pagnoncelli M.G.B., Prado M.R.M., Bonatto S.J.R., Spier M.R., Soccol C.R. 2021. Fungal-mediated biotransformation of soybean supplemented with different cereal grains into a functional compound with antioxidant, anti-inflammatory and antitumoral activities. Biointerface Res. Appl. Chem., 11(1), 8018–33. DOI: 10.33263/briac111.80188033

Galali Y., Omar Z.A., Mohammad Sajadi S. 2020. Biologically active components in by-products of food processing. Food Sci. Nutr. 8:3004–3022. DOI: 10.1002/fsn3.1665

Guo J., Bian Y.Y., Zhu K.X., Guo X.N., Peng W., Zhou H.M. 2015. Activation of endogenous phytase and degradation of phytate in wheat bran. J. Agric. Food Chem., 63, 1082–7. DOI: 10.1021/jf504319t

Hole A.S., Rud I., Grimmer S., Sigl S., Narvhus J., Sahlstrøm S. 2012 Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J. Agric. Food Chem., 60(25), 6369–75. DOI: 10.1021/jf300410h.

Kajala I., Mäkelä J., Coda R., Shukla S., Shi Q., Maina N.H., Juvonen R., Ekholm P., Goyal A., Tenkanen M., Katina K. 2016. Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl. Microbiol. Biotechnol., 100, 3499–510. DOI: 10.1007/s00253-015-7189-6.

Kannah R.Y., Merrylin J., Devi T.P., Kavitha S., Sivashanmungam P., Kumar G., Banu J.R. 2020. Food waste valorization: Biofuels and value added product recovery. Bioresource Technology Reports, 11, 100524. DOI: 10.1016/j.biteb.2020.100524

Khomych G., Krusir G., Horobets O, Levchenko Yu, Gaivoronska Z. 2020. Development of resource effective and cleaner technologies using the waste of plant raw materials. Journal of Ecologi-cal Engineering, 21(4), 178–184. DOI: 10.12911/22998993/119814.

Khromova N.Yu. 2019. Biotechnological conversion of raw grain to obtain probiotic products and feed protein supplements: author... dis. biol. sciences. Moscow, 16.

Khromova N.Yu., Karetkin B.A., Shakir I.V., Panfilov V.I. 2016. Preliminary enzymatic treatment of the protein of grain for the cultivation of lactic acid bacteria and bifidobacteria. Butlerov communications, 48(10), 71–6.

Korhola M., Hakonen R., Juuti K., Edelmann M., Kariluoto S., Nyström L., Sontag-Strohm T., Piironen V. 2014. Production of folate in oat bran fermentation by yeasts isolated from barley and di-verse foods. J. Appl. Microbiol., 117, 679–89. DOI: 10.1111/jam.1256.

Kumar, S., Negi, S., Mandpe, A., Singh, R.V., Hussain, A. 2018. Rapid composting techniques in Indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes – A comprehensive review. Journal of Environmental Management, 227, 189–199. DOI: 10.1016/j.jenvman.2018.08.096

Manini F., Brasca M., Plumed-Ferrer C., Morandi S., Erba D., Casiraghi M.C. 2014. Study of the chemical changes and evolution of microbiota during sourdoughlike fermentation of wheat bran. Cereal Chem., 91, 342–349. DOI: 10.1094/CCHEM-09-13-0190-CESI

Martensson O., Andersson C., Andersson K., Oste R., Holst O. 2001. Formulation of an oat-based fermented product and its comparison with yoghurt. Journal of the Science of Food and Agricul-ture. 81: 1314-1321. https://doi.org/10.1002/jsfa.947.

Maxianová A., Jakimiuk A., Vaverková M.D. 2021. Food waste – challenges and approaches for new devices. Journal of ecological engineering, 22(3), 231–238. DOI: 10.12911/22998993/132430

Melini F., Melini V., Luziatelli F., Ficca A.G., Ruzzi M. 2019. Health promoting components in fermented foods: an up-to-date systematic review. Nutrients, 11, 1189. DOI: 10.3390/nu11051189

Menezes A.G.T., Ramos C.L., Cenzi G., Dias D.R., Schwan R.F., 2020. Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics & Antimicro. Prot. 12, 280–8. DOI: 10.1007/s12602-019-9518-z.

Nascimento T.P., Sales A.E., Porto C.S., Brandão R.M.P., Takaki G.M.C., Teixeira J.A.C. 2015. Teixeira Production and Characterization of New Fibrinolytic Protease from Mucor subtillissimus UCP 1262 in Solid-State Fermentation. Advances in Enzyme Research, 3, 81–91. DOI: 10.4236/aer.2015.33009

Nikinmaa M., Kajala I., Liu X., Nordlund E., Sozer N. 2020. The role of rye bran acidification and in situ dextran formation on structure and texture of high fibre extrudates. Food Res. Int., 137, 109438. DOI: 10.1016/j.foodres.2020.109438

Novik G.I., Wawrzynczyk J., Norrlow O., Szwajcer-Dey E. 2007. Fractions of Barley Spent Grain as Media for Growth of Probiotic Bacteria. Microbiology, 76(6), 902–7. DOI: 10.1134/s0026261707060227

Ogunremi O.R., Agrawal R., Sanni A. 2020. Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. J. Genet. Eng. Biotechnol., 18, 16. DOI: 10.1186/s43141-020-00031-z

Palla M., Blandino M., Grassi A., Giordano D., Sgherri C., Quartacci M.F., 2020. Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours. Sci. Rep., 10, 12856. DOI: 10.1038/s41598-020-69774-6

Petrova P., Petrov K. 2020. Lactic acid fermentation of cereals and pseudocereals: ancient nutritional biotechnologies with modern applications. Nutrients, 12, 1118. DOI: 10.3390/nu12041118.

Priscilla M.R., Pinilla C.M., Gautério G.V., Kalil S.J., Brandelli A. 2019. Xylooligo-saccharides production from wheat middlings bioprocessed with Bacillus subtilis. Food Res. Int., 126, 108673. DOI: 10.1016/j.foodres.2019.108673

Radenkovs V., Klava D., Juhnevica K. 2013. Wheat Bran Carbohydrates as Substrate for Bifidobacterium lactis Development. Int. J. Biol., Biomol., Agric., Food & Biotechnol. Eng., 7(7), 605–610.

Rawal G., Yadav S., Nagayach S. 2015. Phytosterols and the health. Medico Research Chronicles, 2(3), 441–444.

Rizzello C.G., Mueller T., Coda R., Reipsch F., Nionelli L., Curiel J.A. 2013. Synthesis of 2-methoxy benzoquinone and 2:6–dimethoxybenzoquinone by selected lactic acid bacteria during sour-dough fermentation of wheat germ. Microb. Cell. Fact., 12, 105. DOI: 10.1186/1475-2859-12-105.

Ruas-Madiedo P., Hugenholtz J., Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J., 12, 163–71. DOI: 10.1016/S0958-6946(01)00160-1

Salari M., Razavi S.H., Gharibzahedi S.M.T. 2015. Characterising the synbiotic beverages based on barley and malt flours fermented by Lactobacillus delbrueckii and paracasei strains. Quality Assurance and Safety of Crops & Foods, 7, 355–61.

Shiferaw Terefe N., Augustin M.A. 2019. Fermentation for tailoring the technological and health related functionality of food products. Crit. Rev. Food Sci. Nutr., 1–27.

Skendi A., Zinoviadou K.G., Papageorgiou M., Rocha J.M. 2020. Advances on the valorisation and functionalization of by-products and wastes from cerealbased processing industry. Foods, 9, 1243. DOI: 10.3390/foods9091243

Spaggiari M., Ricci A., Calani L., Bresciani L., Neviani E., Dall’Asta C., Lazzi C., Galaverna G. 2020. Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT – Food Science and Technology, 118, 108668. DOI: 10.1016/j.lwt.2019.108668

Sustainable Development Goals. Agricultural markets and sustainable development: global value chains, small farmers and digital innovation. Available at: http://www.fao.org/sustainable-development-goals/indicators/ru/

The FAO report. The state of affairs in the markets of agricultural products-2020. Agricultur-al markets and sustainable development: global value chains, small farmers and digital innovation. Rome, Italy: FAO; 2020. DOI: 10.4060/cb0665ru

Torres-León C., Ramírez-Guzman N., Londoño-Hernandez L., Martinez-Medina G.A., Díaz-Herrera R., Navarro-Macias V., Alvarez-Pérez O.B., Picazo B., Villarreal-Vázquez M., Ascacio-Valdes J., Aguilar C.N. 2018. Food waste and byproducts: an opportunity to minimize malnutrition and hunger in developing countries. Front Sustain Food Syst., 2, 52. DOI: 10.3389/fsufs.2018.00052

Tsafrakidou P., Michaelidou A.M., Biliaderis C.G. 2020. Fermented cereal-based products: nutritional aspects, possible impact on gut microbiota and health implications. Foods, 9, 734. DOI: 10.1016/S0958-6946(01)00160-1.

Turpin W., Humblot C., Guyot J.P. 2011. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl. Environ. Microbiol. 77, 8722–8734. DOI: 10.1128/aem.05988-11

Verni M., Rizzello C.G., Coda R. 2019. Fermentation biotechnology applied to cereal industry by-products: nutritional and functional insights. Front Nutr., 6, 42. DOI: 10.3389/fnut.2019.00042

Voběrkova S., Vaverková M.D., Burešová A., Adamcová D., Vršanská M., Kynický J., Brtnický M., Adam V. 2020. Food waste composting. Is it really so simple as stated in scientific literature? A case study. Science of the Total Environment, 723, 138202. DOI: 10.1016/j.scitotenv. 2020.138202

Xie C.Y., Gu Z.X., You X., Liu G., Tan Y., Zhang H. 2010. Screening of edible mushrooms for release of ferulic acid from wheat bran by fermentation. Enzyme Microb. Technol., 46, 125–8. DOI: 10.1016/j.enzmictec.2009.10.005

Xie C., Coda R., Chamlagain B., Edelmann M., Deptula P., Varmanen P. 2018. In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii. J. Cer. Sci., 81, 133–9. DOI: 10.1016/j.jcs.2018.05.002.

Xu Y., Pitkänen L., Maina N.H., Coda R., Katina K., Tenkanen M. 2018. Interactions between fava bean protein and dextrans produced by Leuconostoc Pseudomesenteroides DSM 20193 and Weissella Cibaria Sj 1b. Carbohydr. Polym. 190, 315–323. DOI: 10.1016/j.carbpol.2018.02.082

Žilić S., Hadži-Tašković Šukalović V., Dodig D., Maksimović V., Maksimović M., & Basić Z. 2011. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. Journal of Cereal Science, 54(3), 417–424. DOI: 10.1016/j.jcs.2011.08.006


  • На текущий момент ссылки отсутствуют.