БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА В КОМПЕНСАЦИИ ПРОЯВЛЕНИЙ ГИПЕРГЛИКЕМИИ

Лина Александровна Цирульниченко

Аннотация


Метаболические расстройства, такие как гипергликемия и гиперхолестеринемия стали большой угрозой для здоровья и жизни современного человека. Такие факторы, как старение, ожирение, снижение физической активности, рост населения и урбанизация могут постепенно привести к устойчивому увеличению числа больных сахарным диабетом. По данным IDF Diabetes Atlas ожидается, что распространенность сахарного диабета вырастет к 2035 году с 382 до 471 миллионов человек. Кроме таких угрожающих жизни состояний, как диабетический кетоацидоз, гипер- и гипогликемическая кома, сахарный диабет является фактором риска развития инфаркта миокарда, ишемического инсульта и других сосудистых нарушений. Поэтому поиск новых путей решения этих проблем является одной из главных задач здравоохранения во всем мире. В этих условиях исследователи обращают свое внимание на выявление природных веществ, позволяющих справиться с данными метаболическими нарушениями. Применение различных экстрактов и настоев на основе растительного сырья для компенсации и профилактики сахарного диабета известно с древних времен. На сегодняшний день фармацевтическая и пищевая индустрия разрабатывает широкий ассортимент биологически активных пищевых добавок и функциональных продуктов питания для поддержания высокого качества жизни и адаптации людей, имеющих различные проявления гипергликемии. Действие компонентов пряных растений основано на механизмах защиты и восстановления панкреатических β-клеток в островках лангерганса, что позволяет увеличивать секрецию инсулина и в то же время защищать β-клетку от разрушения. Обзору основных пряных растений и содержащихся в них биологически активных компонентов, позволяющих компенсировать гипергликемичекие проявления, посвящена данная статья.

Ключевые слова


диабет; биологически активные вещества; пряные растения; функциональные продукты питания; адаптогены

Полный текст:

PDF

Литература


Al-Suhaimi E.A., Al-Riziza N.A., & Al-Essa R.A. (2011). Physiological and therapeutical roles of ginger and turmeric on endocrine functions. The American Journal of Chinese Medicine, 39, 215–231. DOI: 10.1142/S0192415X11008762

Ali Z., Ferreira D., Carvalho P., Avery M.A., Khan I.A. Nigellidine-4-O-sulfite, the first sulfated indazole-type alkaloid from the seeds of Nigella sativa. J Nat Prod 2008; 71(6): 1111-1112. DOI: 10.1021/np800172x

Amr A.R., & Maysa M.E. (2010). Antiulcer effect of cinnamon and chamomile aqueous extracts in rat models. The Journal of American Science, 6, 209–216.

Bamosa A.O., Kaatabi H., Lebda F.M., Elq A.M., & Al-Sultanb A. (2010). Effect of Nigella Sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian Journal of Physiology and Pharmacology, 54, 344–354.

Burits M., Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000; 14(5): 323–328. DOI: 10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q

Choudhury H., Pandey M., Hua Ch., Cheah Shi Mun, Jing J.K., Kong L., Ern L.Y., Ash-raf N.A. i Kit S.W. (2018) An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine 8, 361–376. DOI: 10.1016/j.jtcme.2017.08.012

El-Ghorab A.H., El-Massry K.F., Marx F., Fadel H.M. Antioxidant activity of Egyptian Eucalyptus camaldulensis var. brevirotsris leaf extracts. Food 2003; 47(1): 41–45. DOI: 10.1002/food.200390009

Elosta A., Ghous T., & Ahmed N. (2012). Natural products as anti-glycation agents: Possible therapeutic potential for diabetic complications. Current Diabetes Review, 8, 92–108. DOI: 10.2174/157339912799424528

Faqih A.M., & Al-Nawaiseh F.Y. (2006). The immediate glycemic response to four herbal teas in healthy adults. Jordan Medical Journal, 40, 266–275.

Gali-Muhtasib H., El-Najjar N., Schneider-Stock R. The medicinal potential of black seed (Nigella sativa) and its components. Adv Phytomed 2006; 2: 133–153. DOI: 10.1016/S1572-557X(05)02008-8

Gray A.M., & Flatt P.R. (1999). Insulin releasing and insulin-like activity of the traditional antidiabetic plant Coriandrum sativum (coriander). British Journal of Nutrition, 81, 203–209. DOI: 10.1017/S0007114599000392

Hameed I., Dastagir G., Hussain F. Nutritional and elemental analyses of some selected medicinal plants of the family Polygonaceae. Pak J Bot 2008; 40(6): 2493–2502.

Hussein M.R., Abu-Dief E.E., Abd El-Reheem M.H., Abd-Elrahman A. Ultrastructural evaluation of the radioprotective ef- fects of melatonin 237 against X-rayinduced skin damage in Albino rats. Int J Clin Exp Pathol 2005; 86(1): 45–55. DOI: 10.1111/j.0959-9673.2005.00412.x

Imparl-Radosevich J., Deas S., Polansky M.M., Baedke D.A., Ingebritsen T.S., Ander-son R.A., & Graves D.J. (1998). Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: Implications for cinnamon regulations of insulin signalling. Hormone Research, 50, 177–182. DOI: 10.1159/000023270

Jagtap A G., & Patil P.B. (2010). Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food and Chemical Toxicology, 48, 2030–2036. DOI: 10.1016/j.fct.2010.04.048

Jayaprakasha G.K., Ohnishi-Kameyama M., Ono H., Yoshida M., & Jaganmohan R.L. (2006). Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. Journal of Agricultural and Food Chemistry, 54, 1672–1679. DOI: 10.1021/jf052736r

Kaefer C.M., & Milner J.A. (2008). The role of herbs and spices in cancer prevention. The Journal of Nutritional Biochemistry, 19, 347–361. DOI: 10.1016/j.jnutbio.2007.11.003

Kooti W., Noohi Z.H., Sharafi-Ahvazi N., Asadi-Samani M., Ashtary- Larkye D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med 2016; 14(10): 732–745. DOI: 10.1016/S1875-5364(16)30088-7

Kurokawa M., Kumeda C.A., Yamamura J., Kamiyama T., & Shiraki K. (1998). Antipy-retic activity of cinnamyl derivatives and related compounds in influenza virusinfected mice. European Journal of Pharmacology, 348, 45–51. DOI: 10.1016/S0014-2999(98)00121-6

Lee H. (2005). Cuminaldehyde: Aldose reductase and a-glucosidase inhibitor derived from Cuminum cyminum L. seeds. Journal of Agriculture and Food Chemistry, 53, 2446–2450. DOI: 10.1021/jf048451g

Li Y., Tran V.H., Duke C.C., & Roufogalis B.D. (2012b). Preventive and protective properties of Zingiber officinale (Ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evidence-Based Complementary and Alternative Medicine, 2012, 516870. DOI: 10.1155/2012/516870

Neelakantan N., Narayanan M., Souza R.J., & Dam R.M. (2014). Effect of fenugreek (Trigonella foenumgraecum L.) intake on glycemia: A metaanalysis of clinical trials. Nutrition Journal, 13, 7. DOI: 10.1186/1475-2891-13-7

Neeraja A., & Rajyalakshmi P. (1996). Hypoglycemic effect of processed fenugreek seeds in humans. Journal of Food Science and Technology, 33, 427–430.

Sharma R.D. (1986). Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutrition Research, 6, 1353–1364. DOI: 10.1016/S0271-5317(86)80020-3

Singh G., Maurya S., DeLampasona M.P., & Catalan C.A. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45, 1650–1661. DOI: 10.1016/j.fct.2007.02.031

Srichamroen A., Thomson A.B.R., Field C.J., & Basu T.K. (2009). In vitro intestinal glucose uptake is inhibited by galactomannan from Canadian fenugreek seed (Trigonella foenum-graecum L.) in genetically lean and obese rats. Nutrition Research, 29, 49–54. DOI: 10.1016/j.nutres.2008.11.002

Rajeshwari C.U., Abirami M., & Andallu B. (2011). In vitro and in vivo antioxidant potential of aniseeds (Pimpinella anisum). Asian Journal of Experimental Biological Sciences, 2, 80–89.

Tung Y.T., Chua M.T., Wang S.Y., & Chang S.T. (2008). Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology, 99, 3908–3913. DOI: 10.1016/j.biortech.2007.07.050.


Ссылки

  • На текущий момент ссылки отсутствуют.